The thermal agglomeration of ultrathin (<30nm) single crystal silicon-on-insulator (SOI) films is a morphological evolution phenomenon with practical and scientific importance. This materials phenomenon represents both a critical process limitation for the fabrication of advanced ultrathin SOI-based semiconductor devices as well as a scientifically interesting morphological evolution problem. Investigations to date have attributed this phenomenon to a stress-induced morphological instability. In this paper, we demonstrate that SOI agglomeration is a surface-energy-driven dewetting phenomenon. Specifically, we propose that agglomeration occurs via a two-step surface-energy-driven mechanism consisting of (1) defect-mediated film void nucleation and (2) surface-diffusion-limited film dewetting via capillary edge and generalized Rayleigh instabilities. We show that this theory can explain all of the key experimental observations from the SOI agglomeration literature, including the locations of agglomeration initiation, the greater instability of patterned film edges, the destabilizing effect of decreasing silicon layer thickness and increasing temperature, the strikingly periodic silicon finger and island formation agglomeration morphology, and the scaling of agglomerated structure dimensions with the silicon layer thickness. General implications of this theory for the thermal stability of SOI and other common thin-film-on-insulator structures are also discussed.

1.
C.
Jahan
,
O.
Faynot
,
L.
Tosti
, and
J. M.
Hartmann
,
J. Cryst. Growth
280
,
530
(
2005
).
2.
The International Technology Roadmap for Semiconductors, 2003 Edition, Executive Summary, p. 26 (2003); a link to this report can be found at http://www.itrs.net/Links/2003ITRS/ExecSum2003.pdf
3.
H.
Ikeda
,
Y.
Ishikawa
,
Y.
Homma
, and
M.
Tabe
,
Digest of Papers Microprocesses and Nanotechnology 2003. 2003 International Microprocesses and Nanotechnology
, p.
18
.
4.
R.
Nuryadi
,
Y.
Ishikawa
,
Y.
Ono
, and
M.
Tabe
,
J. Vac. Sci. Technol. B
20
,
167
(
2002
).
5.
Y.
Ishikawa
,
M.
Kumezawa
,
R.
Nuryadi
, and
M.
Tabe
,
Appl. Surf. Sci.
190
,
11
(
2002
).
6.
Y.
Ishikawa
,
Y.
Imai
,
H.
Ikeda
, and
M.
Tabe
,
Appl. Phys. Lett.
83
,
3162
(
2003
).
7.
R.
Nuryadi
,
Y.
Ishikawa
, and
M.
Tabe
,
Appl. Surf. Sci.
159/160
,
121
(
2000
).
8.
B.
Legrand
,
V.
Agache
,
J. P.
Nys
,
V.
Senez
, and
D.
Stievenard
,
Appl. Phys. Lett.
76
,
3271
(
2000
).
9.
B.
Legrand
,
V.
Agache
,
T.
Melin
,
J. P.
Nys
,
V.
Senez
, and
D.
Stievenard
,
J. Appl. Phys.
91
,
106
(
2002
).
10.
Y.
Ono
,
M.
Nagase
,
M.
Tabe
, and
Y.
Takahashi
,
Jpn. J. Appl. Phys., Part 1
34
,
1728
(
1995
).
11.
D. J.
Eaglesham
,
A. E.
White
,
L. C.
Feldman
,
N.
Moriya
, and
D. C.
Jacobson
,
Phys. Rev. Lett.
70
,
1643
(
1993
).
12.
M.
Schrems
,
T.
Brabec
,
M.
Budil
, and
H.
Potz
,
Proceedings of the International Conference on the Science and Technology of Defects in Semiconductors
(
Elsevier
,
New York
,
1990
), p.
245
.
13.
J.
Vanhellemont
and
C.
Claeys
,
J. Appl. Phys.
62
,
3960
(
1987
).
14.
H.
Gao
and
W. D.
Nix
,
Annu. Rev. Mater. Sci.
29
,
173
(
1999
).
15.
A.
Tiberj
,
B.
Fraisse
,
C.
Blanc
,
S.
Contreras
, and
J.
Camassel
,
J. Phys.: Condens. Matter
14
,
13411
(
2002
).
16.
W. W.
Mullins
,
J. Appl. Phys.
30
,
77
(
1959
).
17.
D. J.
Srolovitz
and
M. G.
Goldiner
,
JOM
47
,
31
(
1995
).
18.
L. F.
Giles
,
A.
Nejim
, and
P. L. F.
Hemment
,
Electron. Lett.
29
,
788
(
1993
).
19.
D. K.
Sadana
,
J.
Lasky
,
H. J.
Hovel
, and
K.
Petrillo
,
Proceedings of the 1994 IEEE International SOI Conference
,
1994
(unpublished), p.
111
.
20.
H. J.
Hovel
,
Proceedings of the 1994 IEEE International SOI Conference
(Cat. No. 39537),
1996
, p.
1
.
21.
E.
Jiran
and
C. V.
Thompson
,
J. Electron. Mater.
19
,
1153
(
1990
).
22.
E.
Jiran
and
C. V.
Thompson
,
Thin Solid Films
208
,
23
(
1992
).
23.
F. A.
Nichols
and
W. W.
Mullins
,
Trans. Metall. Soc. AIME
233
,
1840
(
1965
).
24.
R. H.
Brandon
and
F. J.
Bradshaw
, RAE (Farnborough) 66095
1966
(unpublished).
25.
W.
Kan
and
H.
Wong
,
J. Appl. Phys.
97
,
043515
(
2005
).
26.
M. E.
Keeffe
,
C. C.
Umbach
, and
J. M.
Blakely
,
J. Phys. Chem. Solids
55
,
965
(
1994
).
27.
M.
McCallum
,
P. W.
Voorhees
,
M. J.
Miksis
,
S. H.
Davis
, and
H.
Wong
,
J. Appl. Phys.
79
,
7604
(
1996
).
28.
Z.
Burhanudin
,
R.
Nuryadi
,
Y.
Ishikawa
,
M.
Tabe
, and
Y.
Ono
,
Appl. Phys. Lett.
87
,
121905
(
2005
).
You do not currently have access to this content.