×

Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility. (English) Zbl 1343.35129

Summary: In this work, sharp-interface limits for the degenerate Cahn-Hilliard equation with a polynomial double-well free energy and a mobility that vanishes at the minima of the double well are derived. For the choice of a quadratic mobility, the leading order sharp-interface motion is not governed by pure surface diffusion, as has been previously claimed in the literature, but contains a contribution from nonlinear, porous-medium-type bulk diffusion at the same order. Our analysis reveals that there are two subcases: One, where the solution for the order parameter is bounded between the minima (proven to exist for the first mobility by C. M. Elliott and H. Garcke [SIAM J. Math. Anal. 27, No. 2, 404–423 (1996; Zbl 0856.35071)]), and one where it converges to the classical stationary solution of the Cahn-Hilliard equation. Consistent treatment of the bulk diffusion requires the matching of exponentially large and small terms in combination with multiple inner layers. Moreover, the leading order sharp-interface motion depends sensitively on the choice of mobility. The asymptotic analysis shows that, for example, with a biquadratic mobility, the leading order sharp-interface motion is driven only by surface diffusion. The sharp-interface models are corroborated by comparing relaxation rates of perturbations to a radially symmetric stationary state with those obtained by the phase field model.

MSC:

35K35 Initial-boundary value problems for higher-order parabolic equations
35Q35 PDEs in connection with fluid mechanics
35B40 Asymptotic behavior of solutions to PDEs
74N20 Dynamics of phase boundaries in solids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
76E17 Interfacial stability and instability in hydrodynamic stability
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

Citations:

Zbl 0856.35071

Software:

Matlab; Mathematica; DLMF

References:

[1] H. Abels, H. Garcke, and G. Grün, {\it Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities}, Math. Models Methods Appl. Sci., 22 (2012), 1150013. · Zbl 1242.76342
[2] H. Abels and M. Röger, {\it Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids}, Ann. Inst. H. Poincarē Anal. Non Linéaire, 26 (2009), pp. 2403-2424. · Zbl 1181.35343
[3] N. D. Alikakos, P. W. Bates, and X. Chen, {\it Convergence of the Cahn-Hilliard equation to the Hele-Shaw model}, Arch. Ration. Mech. Anal., 128 (1994), pp. 165-205. · Zbl 0828.35105
[4] P. Álvarez-Caudevilla and V. A. Galaktionov, {\it Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches}, Nonlinear Anal., 121 (2015), pp. 19-35. · Zbl 1320.35174
[5] L. Banas̆, A. Novick-Cohen, and R. Nürnberg, {\it The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison}, Netw. Heterog. Media, 8 (2013), pp. 37-64. · Zbl 1270.35288
[6] J. W. Barrett and J. F. Blowey, {\it Finite element approximation of a degenerate Allen-Cahn/Cahn-Hilliard system}, SIAM J. Numer. Anal., 39 (2002), pp. 1598-1624. · Zbl 1012.35004
[7] J. W. Barrett, J. F. Blowey, and H. Garcke, {\it Finite element approximation of a fourth order nonlinear degenerate parabolic equation}, Numer. Math., 80 (1998), pp. 525-556. · Zbl 0913.65084
[8] J. W. Barrett, J. F. Blowey, and H. Garcke, {\it Finite element approximation of the Cahn-Hilliard equation with degenerate mobility}, SIAM J. Numer. Anal., 37 (1999), pp. 286-318. · Zbl 0947.65109
[9] J. W. Barrett, J. F. Blowey, and H. Garcke, {\it On fully practical finite element approximations of degenerate Cahn-Hilliard systems}, ESAIM Math. Model. Numer. Anal., 35 (2002), pp. 713-748. · Zbl 0987.35071
[10] J. W. Barrett, H. Garcke, and R. Nürnberg, {\it A phase field model for the electromigration of intergranular voids}, Interfaces Free Bound., 9 (2007), pp. 171-210. · Zbl 1132.35082
[11] F. Bernis, {\it Finite speed of propagation and continuity of the interface for thin viscous flows}, Adv. Differential Equations, 1 (1996), pp. 337-368. · Zbl 0846.35058
[12] D. N. Bhate, A. Kumar, and A. F. Bower, {\it Diffuse interface model for electromigration and stress voiding}, J. Appl. Phys., 87 (2000), pp. 1712-1721.
[13] M. Bowen and T. P. Witelski, {\it The linear limit of the dipole problem for the thin film equation}, SIAM J. Appl. Math., 66 (2006), pp. 1727-1748. · Zbl 1113.35106
[14] J. P Boyd, {\it The arctan/tan and Kepler-Burgers mappings for periodic solutions with a shock, front, or internal boundary layer}, J. Comput. Phys., 98 (1992), pp. 181-193. · Zbl 0760.65106
[15] A. J. Bray and C. L. Emmott, {\it Lifshitz-Slyozov scaling for late-stage coarsening with an order-parameter-dependent mobility}, Phys. Rev. B(3), 52 (1995), pp. R685-R688.
[16] G. Caginalp and P. C. Fife, {\it Dynamics of layered interfaces arising from phase boundaries}, SIAM J. Appl. Math., 48 (1988), pp. 506-518.
[17] J. W. Cahn and J. E. Hilliard, {\it Spinodal decomposition: A reprise}, Acta Metall., 19 (1971), pp. 151-161.
[18] J. W. Cahn and J. E. Taylor, {\it Surface motion by surface diffusion}, Acta Metall. Mater., 42 (1994), pp. 1045-1063.
[19] J. W. Cahn, C. M. Elliott, and A. Novick-Cohen, {\it The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature}, European J. Appl. Math., 7 (1996), pp. 287-302. · Zbl 0861.35039
[20] J. W. Cahn and J. E. Hilliard, {\it Free energy of a nonuniform system. I. Interfacial free energy}, J. Chem. Phys., 28 (1958), pp. 258-268. · Zbl 1431.35066
[21] H. D. Ceniceros and C. J. García-Cervera, {\it A new approach for the numerical solution of diffusion equations with variable and degenerate mobility}, J. Comput. Phys., 246 (2013), pp. 1-10. · Zbl 1349.65275
[22] L. Chen, {\it Phase-field models for microstructure evolution}, Annu. Rev. Mater. Res., 32 (2002), pp. 113-140.
[23] S. Dai and Q. Du, {\it Motion of interfaces governed by the Cahn-Hilliard equation with highly disparate diffusion mobility}, SIAM J. Appl. Math., 72 (2012), pp. 1818-1841. · Zbl 1276.35033
[25] C. M. Elliott and H. Garcke, {\it On the Cahn-Hilliard equation with degenerate mobility}, SIAM J. Math. Anal., 27 (1996), pp. 404-423. · Zbl 0856.35071
[26] J. D. Evans, V. A. Galaktionov, and J. R. King, {\it Source-type solutions of the fourth-order unstable thin film equation}, European J. Appl. Math., 18 (2007), pp. 273-321. · Zbl 1156.35387
[27] V. A. Galaktionov, {\it Very singular solutions for thin film equations with absorption}, Stud. Appl. Math., 124 (2010), pp. 39-63. · Zbl 1333.35117
[28] V. A. Galaktionov, {\it On Oscillations of Solutions of the Fourth-Order Thin Film Equation near Heteroclinic Bifurcation Point}, preprint, arXiv:1312.2762, 2013.
[29] H. Garcke, R. Nürnberg, and V. Styles, {\it Stress- and diffusion-induced interface motion: Modelling and numerical simulations}, European J. Appl. Math., 18 (2007), pp. 631-657. · Zbl 1128.74004
[30] G. Giacomin and J. L Lebowitz, {\it Exact macroscopic description of phase segregation in model alloys with long range interactions}, Phys. Rev. Lett., 76 (1996), pp. 1094-1097.
[31] K. Glasner, {\it A diffuse interface approach to Hel-Shaw flow}, Nonlinearity, 16 (2003), pp. 49-66. · Zbl 1138.76340
[32] C. Gugenberger, R. Spatschek, and K. Kassner, {\it Comparison of phase-field models for surface diffusion}, Phys. Rev. E(3), 78 (2008), 016703.
[33] W. Jiang, W. Bao, C. V. Thompson, and D. J. Srolovitz, {\it Phase field approach for simulating solid-state dewetting problems}, Acta Mater., 60 (2012), pp. 5578-5592.
[34] J. R. King and M. Bowen, {\it Moving boundary problems and non-uniqueness for the thin film equation}, European J. Appl. Math., 12 (2001), pp. 321-356. · Zbl 0985.35113
[35] K. Kitahara and M. Imada, {\it On the kinetic equations for binary mixtures}, Prog. Theor. Phys. Suppl., 64 (1978), pp. 65-73.
[36] I. Klapper and J. Dockery, {\it Role of cohesion in the material description of biofilms}, Physical Rev. E(3), 74 (2006), 031902. · Zbl 1191.92065
[37] M. D. Korzec, P. L. Evans, A. Münch, and B. Wagner, {\it Stationary solutions of driven fourth-and sixth-order Cahn-Hilliard-type equations}, SIAM J. Appl. Math., 69 (2008), pp. 348-374. · Zbl 1171.34037
[38] C. G. Lange, {\it On spurious solutions of singular perturbation problems}, Stud. Appl. Math., 68 (1983), pp. 227-257. · Zbl 0539.34046
[39] A. A. Lee, {\it On the Sharp Interface Limits of the Cahn-Hilliard Equation}, M.Sc. thesis, University of Oxford, Oxford, 2013.
[40] A. A. Lee, A. Münch, E. Süli, {\it Degenerate mobilities in phase field models are insufficient to capture surface diffusion}, Appl. Phys. Lett., 107 (2015), 081603.
[41] H.-W. Lu, K. Glasner, A. L. Bertozzi, and C.-J. Kim, {\it A diffuse-interface model for electrowetting drops in a Hele-Shaw cell}, J. Fluid Mech., 590 (2007), pp. 411-435. · Zbl 1141.76482
[42] M. Mahadevan and R. M. Bradley, {\it Phase field model of surface electromigration in single crystal metal thin films}, Phys. D, 126 (1999), pp. 201-213.
[43] W. W. Mullins, {\it Theory of thermal grooving}, J. Appl. Phys., 28 (1957), pp. 333-339.
[44] W. W. Mullins and R. F. Sekerka, {\it Morphological stability of a particle growing by diffusion or heat flow}, J. Appl. Phys., 34 (1963), pp. 323-329.
[45] B. S. Niethammer, {\it Existence and uniqueness of radially symmetric stationary points within the gradient theory of phase transitions}, European J. Appl. Math., 6 (1995), pp. 45-67. · Zbl 0827.35010
[46] A. Novick-Cohen, {\it Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system}, Phys. D, 137 (2000), pp. 1-24. · Zbl 0954.35081
[47] A. Novick-Cohen and L. Peres Hari, {\it Geometric motion for a degenerate Allen-Cahn/Cahn-Hilliard system: The partial wetting case}, Phys. D, 209 (2005), pp. 205-235. · Zbl 1094.35065
[48] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark., {\it NIST Handbook of Mathematical Functions}, Cambridge University Press, New York, 2010. · Zbl 1198.00002
[49] R. L. Pego, {\it Front migration in the nonlinear Cahn-Hilliard equation}, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 422 (1989), pp. 261-278. · Zbl 0701.35159
[50] N. Provatas and K. Elder, {\it Phase-Field Methods in Materials Science and Engineering}, Wiley Interscience Weinheim, Germany, 2010.
[51] S. Puri, A. J. Bray, and J. L. Lebowitz, {\it Phase-separation kinetics in a model with order-parameter-dependent mobility}, Phys. Rev. E(3), 56 (1997), pp. 758-765.
[52] A. Rätz, A. Ribalta, and A. Voigt, {\it Surface evolution of elastically stressed films under deposition by a diffuse interface model}, J. Comput. Phys., 214 (2006), pp. 187-208. · Zbl 1088.74035
[53] A. Rätz, A. Ribalta, and A. Voigt, {\it Surface evolution of elastically stressed films under deposition by a diffuse interface model}, J. Comput. Phys., 214 (2006), pp. 187-208. · Zbl 1088.74035
[54] J. Rubinstein, P. Sternberg, and J. B. Keller, {\it Fast Reaction, Slow Diffusion, and Curve Shortening}, SIAM J. Appl. Math., 49 (1989), pp. 116-133. · Zbl 0701.35012
[55] D. N. Sibley, A. Nold, and S. Kalliadasis, {\it Unifying binary fluid diffuse-interface models in the sharp-interface limit}, J. Fluid Mech., 736 (2013), pp. 5-43. · Zbl 1294.76099
[56] J. E. Taylor and J. W. Cahn, {\it Linking anisotropic sharp and diffuse surface motion laws via gradient flows}, J. Statist. Phys., 77 (1994), pp. 183-197. · Zbl 0844.35044
[57] S. Torabi and J. Lowengrub, {\it Simulating interfacial anisotropy in thin-film growth using an extended Cahn-Hilliard model}, Phys. Rev. E(3), 85 (2012) 041603.
[58] S. Torabi, J. Lowengrub, A. Voigt, and S. Wise, {\it A new phase-field model for strongly anisotropic systems}, R. Soc. Lond. Prod. Ser. A Math., Phys. Eng. Sci., 465 (2009), pp. 1337-1359. · Zbl 1186.80014
[59] L. N. Trefethen, {\it Spectral Methods in MATLAB}, Software Environ. Tools, SIAM, Philadelphia, 2000. · Zbl 0953.68643
[60] L. N Trefethen, {\it Approximation Theory and Approximation Practice}, Appl. Math. SIAM, Philadelphia, 2013. · Zbl 1264.41001
[61] S. van Gemmert, G. T. Barkema, and S. Puri, {\it Phase separation driven by surface diffusion: A Monte Carlo study}, Phys. Rev. E(3), 72 (2005), 046131.
[63] J. K. Wolterink, G. T. Barkema, and S. Puri, {\it Spinodal decomposition via surface diffusion in polymer mixtures}, Phys. Rev. E, 74 (2006), 011804.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.