Skip to main content
Log in

Analysis of the Cahn–Hilliard Equation with a Relaxation Boundary Condition Modeling the Contact Angle Dynamics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We analyze the Cahn–Hilliard equation with a relaxation boundary condition modeling the evolution of an interface in contact with the solid boundary. An L estimate is established which enables us to prove the global existence of the solution. We also study the sharp interface limit of the system. The dynamic of the contact point and the contact angle are derived and the results are compared with the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen S., Cahn J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)

    Google Scholar 

  2. Alikakos N.D., Bates P.W., Chen X.: Convergence of the Cahn–Hilliard equation to the Hele–Shaw model. Arch. Ration. Mech. Anal. 128, 165–205 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bates P.W., Fife P.C.: Nucleation dynamics in the Cahn–Hilliard equation. SIAM J. Appl. Math. 53, 990–1008 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonn D., Ross D.: Wetting transitions. Rep. Prog. Phys. 64, 1085–1163 (2001)

    Article  ADS  Google Scholar 

  5. Caginalp G.: An analysis of a phase field model of a free boundary, Arch. Ration. Mech. Anal. 92, 205–245 (1986)

    MATH  MathSciNet  Google Scholar 

  6. Cahn J.: Critical point wetting. J. Chem. Phys. 66, 3667–3672 (1977)

    Article  ADS  Google Scholar 

  7. Caffarelli L.A., Muller N.E.: An L bound for solutions of the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 133, 129–144 (1995)

    Article  MATH  Google Scholar 

  8. Cahn J., Elliott C.M., Novick-Cohen A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen X.: Global asymptotic limit of solutions of the Cahn–Hilliard equation. J. Differ. Geom. 44, 262–311 (1996)

    MATH  Google Scholar 

  10. Chen X.: Spectrum for the Allen–Cahn, Cahn–Hilliard, and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19(7–8), 1371–1395 (1994)

    Article  MATH  Google Scholar 

  11. Chen, Y.-Z., Wu, L.-C.: Second Order Elliptic Equations and Elliptic Systems, Translation of the Mathematical Monographs, vol. 174. Amer. Math. Soc. Providence, 1998

  12. Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E.: Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009)

    Article  ADS  Google Scholar 

  13. Gilbarg D., Tradinger N.: Elliptic partial Differential Equations of Second Order. Springer, Berlin (1998)

    Google Scholar 

  14. Ladyzhenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, Providence, 1968

  15. Modica L.: Gradient theory of phase transitions with boundary energy. Ann. Inst. Henri Poincaré. 4, 487–512 (1987)

    MATH  MathSciNet  Google Scholar 

  16. Pego R.: Front migration in the nonlinear Cahn–Hilliard equation. Proc. R. Soc. Lond. A 422, 261–278 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Qian T., Wang X.P., Sheng P.: Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E 68, 016306 (2003)

    Google Scholar 

  18. Qian T.Z., Wang X.P., Sheng P.: Power-law slip profile of the moving contact line in two-phase immiscible flows. Phys. Rev. Lett. 93, 094501 (2004)

    Article  ADS  Google Scholar 

  19. Wang X.-P., Qian T., Sheng P.: Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605, 59–78 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Xu X., Wang X.P.: Derivation of Wenzel’s and Cassie’s equations froma phase fieeld model for two phase flow on rough surface. SIAM J. Appl. Math. 70, 2929–2941 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xu X., Wang X.: Analysis of wetting and contact angle hysteresis on chemically patterned surfaces. SIAM J. Appl. Math. 71, 1753–1779 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gao M., Wang X.P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 6587 (1805)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfu Chen.

Additional information

Communicated by D. Kinderlehrer

This work is supported in part by the Hong Kong RGC grants GRF-HKUST 605513, 605311 and NNSF of China grant 91230102. Xinfu Chen would like to thank the Hong Kong University of Science and Technology where most of this work was carry out while he was visiting; he also thanks the financial support from National Science Foundation DMS-1008905. Xianmin Xu would also like to thank the financial support from NSFC 11001260. The authors also thank Professor D. Kinderlehrer and the anonymous referee for their valuable suggestions to make the paper more readable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, X. & Xu, X. Analysis of the Cahn–Hilliard Equation with a Relaxation Boundary Condition Modeling the Contact Angle Dynamics. Arch Rational Mech Anal 213, 1–24 (2014). https://doi.org/10.1007/s00205-013-0713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0713-x

Keywords

Navigation