×

Representations of \(p\)-adic groups over commutative rings. (English) Zbl 07822680

Beliaev, Dmitry (ed.) et al., International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 1. Prize lectures. Berlin: European Mathematical Society (EMS). 332-374 (2023).
Summary: Motivated by the Langlands program in representation theory, number theory, and geometry, the theory of representations of a reductive -adic group, originally in complex vector spaces, has been widely developed in modules over a commutative ring during the last two decades. This article surveys basic results obtained during this period, assuming some familiarity with the representation theory connected to the Langlands program. Addressed to a broader audience, the 2022 ICM Noether Lecture should be accessible without prerequisites and convey intuition on the most striking results.
For the entire collection see [Zbl 1532.00035].

MSC:

20G05 Representation theory for linear algebraic groups
20C08 Hecke algebras and their representations
11F70 Representation-theoretic methods; automorphic representations over local and global fields

References:

[1] R. Abdellatif, Classification des représentations modulo p de SL.2; F /. Bull. Soc. Math. France 142 (2014), no. 3, 537-589. · Zbl 1319.11029
[2] N. Abe, Extension between simple modules of pro-p Iwahori Hecke algebras. J. Inst. Math. Jussieu (2022, to appear).
[3] N. Abe, On a classification of irreducible admissible modulo p representations of a p-adic split reductive group. Compos. Math. 149 (2013), no. 12, 2139-2168. · Zbl 1369.22007
[4] N. Abe, In Change of weight theorem for pro-p-Iwahori Hecke algebras, Around Langlands correspondences, Contemp. Math. 691, pp. 1-13, Amer. Math. Soc., Providence, RI, 2017. · Zbl 1392.22007
[5] N. Abe, A comparison between pro-p-Iwahori Hecke modules and mod p repre-sentations. Algebra Number Theory 13 (2019), no. 8, 1959-1981. · Zbl 1429.22016
[6] N. Abe, Modulo p parabolic induction of pro-p-Iwahori Hecke algebra. J. Reine Angew. Math. 749 (2019), 1-64. · Zbl 1472.22008
[7] N. Abe, Parabolic inductions for pro-p-Iwahori Hecke algebras. Adv. Math. 355 (2019). · Zbl 1496.22008
[8] N. Abe, G. Henniart, F. Herzig, and M.-F. Vignéras, A classification of admissible irreducible modulo p representations of reductive p-adic groups. J. Amer. Math. Soc. 30 (2017), 495-559. · Zbl 1372.22014
[9] N. Abe, G. Henniart, and M.-F. Vignéras, On pro-p-Iwahori invariants of R-representations of p-adic groups. Represent. Theory 22 (2018), 119-159. 66 Article in preparation. · Zbl 1474.22012
[10] N. Abe, G. Henniart, and M.-F. Vignéras, Mod p representations of reduc-tive p-adic groups: Functorial properties. Trans. Amer. Math. Soc. 371 (2019), 8297-8337. · Zbl 1474.22013
[11] N. Abe, F. Herzig, and M.-F. Vignéras, Inverse Satake isomorphism and change of weight. Represent. Theory 26 (2022), 264-324. · Zbl 1517.20009
[12] K. Ardakov and P. Schneider, The Bernstein center in natural characteristic. 2021, arXiv:2105.06128.
[13] A. I. Badulescu, Jacquet-Langlands et unitarisabilité. J. Inst. Math. Jussieu 6 (2007), no. 3, 349-379. · Zbl 1159.22005
[14] L. Berger, Central characters for smooth irreducible modular representations of GL 2 .Q p /. Rend. Semin. Mat. Univ. Padova 128 (2012), 1-6. · Zbl 1266.22018
[15] N. Bourbaki, Éléments de mathématiques. Algèbre, Chap. 8. Modules et anneaux semi-simples. Springer, Berlin-Heidelberg, 2012.
[16] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL 2 .Q p / I. Compos. Math. 138 (2003), 165-188. · Zbl 1044.11041
[17] C. Breuil, F. Herzig, Y. Hu, S. Morra, and B. Schraen, Conjectures and results on modular representations of GL n .K/ for a p-adic field K. 2021, arXiv:2102.06188v3.
[18] C. Breuil, F. Herzig, Y. Hu, S. Morra, and B. Schraen, Gelfand-Kirillov dimen-sion and mod p cohomology for GL 2 . 2021, arXiv:2009.03127v4.
[19] C. Breuil and V. Paskunas, Towards a modulo p Langlands correspondence for GL.2/. Mem. Amer. Math. Soc. 216, 2012. · Zbl 1245.22010
[20] C. Breuil and P. Schneider, First steps towards p-adic Langlands functoriality. J. Reine Angew. Math. 610 (2007), 149-180. · Zbl 1180.11036
[21] P. Broussous, V. Sécherre, and S. Stevens, The local Langlands conjecture for GL.2/. Grundlehren Math. Wiss. 335, Springer, 2006. · Zbl 1100.11041
[22] P. Broussous, V. Sécherre, and S. Stevens, Smooth representations of GL m .D/ V: Endo-classes. Doc. Math. 17 (2012), 23-77. · Zbl 1280.22018
[23] P. Broussous, V. Sécherre, and S. Stevens, Modular local Langlands correspon-dence for GL n . Int. Math. Res. Not. IMRN 15 (2014), 4124-4145. · Zbl 1302.22011
[24] F. Calegari and M. Emerton, In Completed cohomology. A survey, Non-abelian Fundamental Groups and Iwasawa Theory, London Math. Soc. Lecture Note Ser. 393, pp. 239-257, Cambridge University Press, Cambridge, 2011. · Zbl 1288.11056
[25] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paskunas, and S. W. Shin, Patching and the p-adic Langlands program for GL 2 .Q p /. Compos. Math. 154 (2018), no. 3, 503-548. · Zbl 1461.11157
[26] A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Paskunas, and S. Woo Shin, Patching and the p-adic local Langlands correspondence. Cambridge J. Math. 4 (2016), no. 2, 197-287. · Zbl 1403.11073
[27] C. Cheng, Mod p representations of SL 2 .Q p /. J. Number Theory 133 (2013), no. 4, 1312-1330. · Zbl 1275.11087
[28] G. Chinello, Hecke algebra with respect to the pro-p-radical of a maximal com-pact open subgroup for GL.n; F / and its inner forms. J. Algebra 478 (2017), 296-317. · Zbl 1423.20056
[29] G. Chinello, Blocks of the category of smooth ‘-modular representations of GL n .F / and its inner forms: reduction to level 0. Algebra Number Theory 12 (2018), no. 7, 1675-1713. · Zbl 1477.20020
[30] M. Chlouveraki and V. Sécherre, The affine Yokonuma-Hecke algebra and the pro-p Iwahori-Hecke algebra. Math. Res. Lett. 23 (2016), no. 3, 707-718. · Zbl 1385.20001
[31] R. Cluckers, J. Gordon, and I. Halupczok, Integrability of oscillatory functions on local fields: Transfer principles. Duke Math. J. 163 (2014), no. 8, 1549-1600. · Zbl 1327.14073
[32] R. Cluckers, T. Hales, and F. Loeser, Transfer Principle for the Fundamental Lemma. In Stabilisation de la formule des traces, variétés de Shimura, et applica-tions arithmétiques, edited by L. Clozel, M. Harris, J.-P. Labesse, and B.-C. Ngo, International Press of Boston, 2011.
[33] P. Colmez, Representations de GL 2 .Q p / et .’; /-modules. Astérisque 330 (2010), 281-509. · Zbl 1218.11107
[34] P. Colmez, G. Dospinescu, J. Hauseux, and W. Niziol, p-adic étale cohomology of period domains. Math. Ann. 381 (2021), no. 1-2, 105-180. · Zbl 1489.14028
[35] P. Colmez, G. Dospinescu, and V. Paskunas, The p-adic local Langlands corre-spondence for GL 2 .Q p /. Cambridge J. Math. 2 (2014), 1-47. · Zbl 1312.11090
[36] P. Cui, Modulo ‘-representations of p-adic groups SL.N; F /. 2019, arXiv:1912.13473.
[37] P. Cui, Modulo ‘-representations of p-adic groups SL n .F /: Maximal simple k-types. 2020, arXiv:2012.07492.
[38] J.-F. Dat, -tempered representations of p-adic groups I: l-adic case. Duke Math. J. 126 (2005), no. 3, 397-469. · Zbl 1063.22017
[39] J.-F. Dat, Espaces symétriques de Drinfeld et correspondance de Langlands locale. Ann. Sci. Éc. Norm. Supér. 39 (2006), no. 1, 1-74. · Zbl 1141.22004
[40] J.-F. Dat, Finitude pour les représentations lisses des groupes p-adiques. J. Inst. Math. Jussieu 8 (2009), no. 1, 261-333. · Zbl 1158.22020
[41] J.-F. Dat, Représentations lisses p-tempérées des groupes p-adiques. Amer. J. Math. 131 (2009), no. 1, 227-255. · Zbl 1165.22015
[42] J.-F. Dat, Lefschetz operator and local Langlands mod ‘: The regular case. Nagoya Math. J. 208 (2012), 1-38 (Hiroshi Saito memorial volume). · Zbl 1328.11114
[43] J.-F. Dat, Opérateur de Lefschetz sur les tours de Drinfeld et de Lubin-Tate. Compos. Math. 148 (2012), no. 2, 507-530. · Zbl 1247.14025
[44] J.-F. Dat, Théorie de Lubin-Tate non-abélienne ‘-entière. Duke Math. J. 161 (2012), no. 6, 951-1010. · Zbl 1260.11070
[45] J.-F. Dat, Un cas simple de correspondance de Jacquet-Langlands modulo ‘. Proc. Lond. Math. Soc. 104 (2012), 690-727. · Zbl 1241.22020
[46] J.-F. Dat, Lefschetz operator and local Langlands mod ‘: The limit case. Algebra Number Theory 8 (2014), no. 3, 729-766. · Zbl 1329.11126
[47] J.-F. Dat, A functoriality principle for blocks of p-adic linear groups. In Around Langlands Correspondences, pp. 103-131, Contemp. Math. 691, Amer. Math. Soc., Providence, RI, 2017. · Zbl 1388.22013
[48] J.-F. Dat, Equivalence of tame blocks for p-adic general linear groups. Math. Ann. 371 (2018), 565-613. · Zbl 1403.11074
[49] J.-F. Dat, Simple subquotients of big parabolically induced representations of p-adic groups. J. Algebra 510 (2018), 499-507. · Zbl 1402.22018
[50] J.-F. Dat, Depth 0 representations over ZOE1=p. 2022, arXiv:2202.03982v1.
[51] J.-F. Dat, D. Helm, R. Kurinczuk, and G. Moss, Moduli of Langlands parameters. 2020.
[52] J.-F. Dat, D. Helm, R. Kurinczuk, and G. Moss, Finiteness for Hecke algebras of p-adic groups. 2022, arXiv:2203.04929v1.
[53] J.-F. Dat and T. Lanard, Depth zero representations over ZOE1=p. 2022, arXiv:2202.03982v1.
[54] G. Dospinescu, V. Paskunas, and B. Schraen, Gelfand-Kirillov dimension and the p-adic correspondence. 2022, arXiv:2201.12922v1.
[55] A. Dotto, The inertial Jacquet-Langlands correspondence. 2021, arXiv:1707.00635v3.
[56] A. Dotto, Mod p Bernstein centres of p-adic groups. Math. Res. Lett. (2021, accepted).
[57] B. Drevon and V. Sécherre, Décomposition en blocs de la catégorie des représen-tations ‘-modulaires lisses de longueur finie de GL m .D/. 2021, arXiv:2101.05898v1.
[58] O. Dudas, Non-uniqueness of supercuspidal support for finite reductive groups. J. Algebra 510 (2018), 508-512. · Zbl 1402.20020
[59] N. Dupré and J. Kohlhaase, Model categories and pro-p Iwahori-Hecke modules. 2021, arXiv:2112.03150.
[60] M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties. Astérisque 331 (2010), 355-402. · Zbl 1205.22013
[61] M. Emerton, Ordinary parts of admissible representations of reductive p-adic groups II. Astérisque 331 (2010), 383-438.
[62] M. Emerton and D. Helm, The local Langlands correspondence for GL n in fami-lies. Ann. Sci. Éc. Norm. Supér. 47 (2014), no. 4, 655-722. · Zbl 1321.11055
[63] M. Emerton and V. Paskunas, On the effeacibility of certain ı-functors. Astérisque 331 (2010), 461-469. · Zbl 1198.22010
[64] M. Emerton and V. Paskunas, On the density of supercuspidal points of fixed weight in local deformation rings and global Hecke algebras. J. Éc. Poly. Math. 7 (2020), 337-371. · Zbl 1470.11305
[65] L. Fargues and P. Scholze, Geometrization of the local Langlands correspondence. 2021, arXiv:2102.13459v1.
[66] J. Fintzen, Tame cuspidal representations in non-defining characteristics. 2019, arXiv:1905.06374.
[67] J. Fintzen, On the construction of tame cuspidal representations. Compos. Math. 157 (2021), no. 12, 2733-2746. · Zbl 1495.22009
[68] J. Fintzen, Types for tame p-adic groups. Ann. of Math. 193 (2021), no. 1, 303-346. · Zbl 1492.22013
[69] Y. Z. Flicker, The Tame Algebra. J. Lie Theory 21 (2011), no. 2, 469-489. · Zbl 1268.22016
[70] I. Gaisin and J. Rodriguez, Arithmetic families of .’; /-modules and locally analytic representations of GL 2 .Q p /. 2017, arXiv:1703.01627v2.
[71] D. Gaitsgory, From geometric to function-theoretic Langlands (or how to invent shtukas). 2016, arXiv:1606.09608.
[72] W.-T. Gan and L. Lomeli, Globalizations of supercuspidal representations over function fields and applications. J. Eur. Math. Soc. (JEMS) 20 (2018), no. 11, 2813-2858. · Zbl 1454.11099
[73] R. Ganapathy, The Deligne-Kazhdan philosophy and the Langlands conjectures in positive characteristic. Pro-Quest LLC, Ann Arbor, MI, 2012. Thesis.
[74] R. Ganapathy, The local Langlands correspondence for GSp 4 over local function fields. Amer. J. Math. 137 (2015), no. 6, 1441-1534. · Zbl 1332.22018
[75] R. Ganapathy, Congruences of parahoric group schemes. Algebra Number Theory 13 (2019), no. 6, 1475-1499. · Zbl 1460.22006
[76] R. Ganapathy and S. Varma, On the local Langlands correspondence for split classical groups over local function fields. J. Inst. Math. Jussieu 16 (2017), no. 5, 987-1074. · Zbl 1398.11079
[77] A. Genestier and V. Lafforgue, Chtoucas restreints pour les groupes réductifs et paramétrisation de Langlands locale. 2018, arXiv:1709.00978v2.
[78] U. Görtz, Alcove Walks and Nearby Cycle on Affine Flag Manifolds. J. Algebraic Combin. 26 (2007), no. 4, 415-430. · Zbl 1152.20006
[79] E. Grosse-Kloenne, On special representations of p-adic reductive groups. Duke Math. J. 163 (2014), no. 12, 2179-2216. · Zbl 1298.22018
[80] E. Grosse-Kloenne, From pro-p Iwahori-Hecke modules to .’; /-modules II. Int. Math. Res. Not. 2018 (2016), no. 3, 865-906.
[81] E. Grosse-Kloenne, From pro-p-Iwahori Hecke modules to .’; /-modules I. Duke Math. J. 165 (2016), no. 8, 1529-1595. · Zbl 1364.11103
[82] E. Grosse-Kloenne, Supersingular modules as Galois representations. Algebra Number Theory 14 (2020), no. 1, 67-118. · Zbl 1436.11058
[83] T. Haines and S. Rostami, The Satake isomorphism for special maximal parahoric Hecke algebra. Represent. Theory 14 (2010), 264-284. · Zbl 1251.22013
[84] D. Hansen, T. Kaletha, and J. Weinstein, On the Kottwitz conjecture for local shtuka spaces. 2022, arXiv:1709.06651v4.
[85] M. Harris, Speculations on the mod p representation theory of p-adic groups. Ann. Fac. Sci. Toulouse Math. 6 (2016), no. 25, 2-3.
[86] J. Hauseux, Extensions entre séries principales p-adiques et modulo p de G.F /. · Zbl 1338.22008
[87] J. Inst. Math. Jussieu 15 (2016), no. 2, 225-270. · Zbl 1338.22008
[88] J. Hauseux, Compléments sur les extensions entre séries principales p-adiques et modulo p de G.F /. Bull. Soc. Math. 145 (2017), no. 1, 161-192. · Zbl 1367.22006
[89] J. Hauseux, On the exactness of ordinary parts over a local field of character-istic p. Pacific J. Math. 295 (2018), no. 1, 7-30. · Zbl 1385.22006
[90] J. Hauseux, Parabolic induction and extensions. Algebra Number Theory 12 (2018), no. 4, 779-831. · Zbl 1395.22008
[91] J. Hauseux, Sur une conjecture de Breuil-Herzig. J. Reine Angew. Math. (2019), no. 751, 91-119. · Zbl 1423.22018
[92] J. Hauseux, T. Schmidt, and C. Sorensen, Deformation rings and parabolic induc-tion. J. Théor. Nombres Bordeaux 30 (2018), no. 2, 695-727. · Zbl 1423.22019
[93] J. Hauseux, T. Schmidt, and C. Sorensen, Functorial properties of generalised Steinberg representations. J. Number Theory 195 (2019), 312-329. · Zbl 1401.22017
[94] X. He and R. Ganapathy, Tits groups of Iwahori-Weyl groups and presentations of Hecke algebras. 2021, arXiv:2107.01768v1.
[95] D. Helm, On ‘-adic families of representations of GL 2 .Q p /. Math. Res. Lett. 17 (2010), 805-822. · Zbl 1277.11109
[96] D. Helm, On the modified mod p local correspondence for GL 2 .Q ‘/. Math. Res. Lett. 20 (2013), 489-500. · Zbl 1294.11073
[97] D. Helm, The Bernstein center of the category of smooth W .k/OEGL n .F /-modules. Forum Math. Sigma 4 (2016).
[98] D. Helm, Whittaker models and the integral Bernstein center for GL n . Duke Math. J. 165 (2016), no. 9, 1597-1628. · Zbl 1343.11053
[99] D. Helm, Curtis homomorphisms and the integral Bernstein center for GL n . Algebra Number Theory 14 (2020), no. 10, 2607-2645. · Zbl 1469.11090
[100] D. Helm and G. Moss, Converse theorems and the local Langlands correspon-dence in families. Invent. Math. 214 (2018), 999-1022. · Zbl 1482.11073
[101] G. Henniart, Une caractérisation de la correspondance de Langlands locale pour GL.n/. Bull. Soc. Math. 130 (2002), no. 4, 587-602. · Zbl 1029.22023
[102] G. Henniart, Sur les représentations modulo p de groupes réductifs p-adiques. Contemp. Math. 489 (2009).
[103] G. Henniart and B. Lemaire, Intégrales orbitales tordues sur GL.n; F / et corps locaux proches: Applications. Canad. J. Math. 58 (2006), no. 6, 1229-1267. · Zbl 1106.22012
[104] G. Henniart and B. Lemaire, Représentations des espaces tordus sur un groupe réductif connexe p-adique. Astérisque 387 (2017). · Zbl 1409.22013
[105] G. Henniart and M.-F. Vignéras, Comparison of compact induction with parabolic induction. Special issue to the memory of J. Rogawski. Pacific J. Math. 260 (2012), no. 2, 457-495. · Zbl 1284.22009
[106] G. Henniart and M.-F. Vignéras, The Satake isomorphism modulo p with weight. J. Reine Angew. Math. 701 (2015), 33-75. · Zbl 1327.22019
[107] G. Henniart and M.-F. Vignéras, Representations of a p-adic group in character-istic p. For Joseph Bernstein. Proc. Sympos. Pure Math. 101 (2019), 171-210. · Zbl 1469.22007
[108] G. Henniart and M.-F. Vignéras, Representations of a reductive p-adic group in characteristic distinct from p. Tunis. J. Math. (2022). · Zbl 1535.11074
[109] F. Herzig, The classification of admissible irreducible modulo p representations of a p-adic GL n . Invent. Math. 186 (2011), 373-434. · Zbl 1235.22030
[110] F. Herzig, A Satake isomorphism in characteristic p. Compos. Math. 147 (2011), no. 1, 263-283. · Zbl 1214.22004
[111] F. Herzig, K. Koziol, and M.-F. Vignéras, On the existence of admissible super-singular representations of p-adic reductive groups (with an appendix by Sug Woo Shin). Forum Math. Sigma 8 (2020). · Zbl 1462.22002
[112] C. Heyer, Parabolic induction via the parabolic pro-p Iwahori Hecke algebra. 2021, arXiv:2010.08435v2.
[113] C. Heyer, The left adjoint of the derived parabolic induction. 2022, arXiv:2204.11581v1.
[114] Y. Hu, Normes invariantes et existence de filtrations admissibles. J. Reine Angew. Math. 634 (2009), 107-141. · Zbl 1214.11132
[115] Y. Hu, Sur quelques représentations supersingulières de GL 2.Q p f /. J. Algebra 324 (2010), 1577-1615. · Zbl 1206.22010
[116] Y. Hu, Diagrammes canoniques et représentations modulo p de GL 2.F /. J. Inst. Math. Jussieu 11 (2012), 67-118. · Zbl 1232.22012
[117] M. Kashiwara and P. Shapira, Categories and Sheaves. Grundlehren Math. Wiss. 332, Springer, Berlin-Heidelberg, 2006. · Zbl 1118.18001
[118] J. Kohlhaase, Smooth duality in natural characteristic. Adv. Math. 317 (2017), 1-49. · Zbl 1475.22025
[119] K. Koziol, A classification of the irreducible mod p representations of U.1; 1/.Q p 2 =Q p /. Ann. Inst. Fourier (Grenoble) 66 (2016), no. 4, 1545-1582. · Zbl 1364.22007
[120] K. Koziol, Pro-p-Iwahori invariants for SL 2 and L-packets of Hecke modules. Int. Math. Res. Not. 4 (2016), 1090-1125. · Zbl 1347.11048
[121] K. Koziol, Hecke module structure on first and top pro-p-Iwahori Cohomology. Acta Arith. 186 (2018), 349-376. · Zbl 1455.20004
[122] K. Koziol, Homological dimension of simple pro-p-Iwahori-Hecke modules. Math. Res. Lett. 26 (2019), no. 3, 769-804. · Zbl 1489.22012
[123] K. Koziol, Derived right adjoints of parabolic induction: an example. 2022, arXiv:2202.09915v1.
[124] K. Koziol, F. Herzig, M.-F. Vignéras (appendix, and S.-W. Shin, On the existence of admissible supersingular representations of p-adic reductive groups. Forum Math. Sigma 8(e2) (2020), 73. · Zbl 1462.22002
[125] K. Koziol and L. Peskin, Irreducible admissible mod-p representations of meta-plectic groups. Manuscripta Math. 155 (2018), no. 3-4, 539-577. · Zbl 1385.22007
[126] K. Koziol and P. Xu, Hecke modules and supersingular representations of U.2; 1/. Represent. Theory 19 (2015), 56-93. · Zbl 1315.22021
[127] R. J. Kurinczuk, ‘-modular representations of unramified p-adic U.2; 1/. Algebra Number Theory 8 (2014), no. 8, 1801-1838. · Zbl 1304.22022
[128] R. Kurinczuk and N. Matringe, Rankin-Selberg local factors modulo ‘. Selecta Math. (N.S.) 23 (2017), no. 1, 767-811. · Zbl 1385.11033
[129] R. Kurinczuk and N. Matringe, The ‘-modular local Langlands correspondence and local factors. J. Inst. Math. Jussieu 20 (2019), no. 5, 1585-1635. · Zbl 1490.22011
[130] R. Kurinczuk and N. Matringe, Test vectors for local cuspidal Rankin-Selberg integrals of GL.n/ and reduction modulo ‘. Nagoya Math. J. 233 (2019), 170-192. · Zbl 1415.11080
[131] R. Kurinczuk and N. Matringe, Characterization of the relation between two ‘-modular correspondences. C. R. Math. 358 (2020), no. 2, 201-209. · Zbl 1469.11144
[132] R. Kurinczuk, D. Skodlerack, and S. Stevens, Endo-parameters for p-adic clas-sical groups. Invent. Math. 223 (2021), 597-723. · Zbl 1505.22008
[133] R. Kurinczuk and S. Stevens, Cuspidal ‘-modular representations of p-adic clas-sical groups. J. Reine Angew. Math. 2020 (2020), no. 764, 23-69. · Zbl 1486.11080
[134] T. Lanard, Sur les ‘-blocs de niveau zéro des groupes p-adiques. Compos. Math. 154 (2018), no. 7, 1473-1507. · Zbl 1403.22018
[135] T. Lanard, Sur les ‘-blocs de niveau zéro des groupes p-adiques II. 2018, arXiv:1806.09543.
[136] T. Lanard, Unipotent ‘-blocks for simply connected p-adic groups. 2020, arXiv:2011.01165v1.
[137] D. Le, On some nonadmissible smooth irreducible representations for GL 2 . Math. Res. Lett. 26 (2019), no. 6, 1747-1758. · Zbl 1469.20050
[138] F. Ly, Représentations de Steinberg modulo p pour un groupe réductif sur un corps local. Pacific J. Math. 277 (2015), no. 2, 425-462. · Zbl 1401.22019
[139] N. Matringe and G. Moss, The Kirillov model in families. 2022, arXiv:2005.13484v3.
[140] A. Minguez and V. Sécherre, Représentations banales de GL.m; D/. Compos. Math. 149 (2013), 679-704. · Zbl 1283.22014
[141] A. Minguez and V. Sécherre, Représentations lisses modulo ‘de GL m .D/. Duke Math. J. 163 (2014), 795-887. · Zbl 1293.22005
[142] A. Minguez and V. Sécherre, Types modulo ‘pour les formes intérieures de GL n sur un corps local non archimédien, avec un appendice par V. Sécherre et S. Stevens. Proc. Lond. Math. Soc. 109 (2014), no. 4, 823-891. · Zbl 1302.22013
[143] A. Minguez and V. Sécherre, Unramified ‘-modular representations of GL.n; F / and its inner forms. Int. Math. Res. Not. 8 (2014), 2090-2118. · Zbl 1325.22010
[144] A. Minguez and V. Sécherre, Correspondance de Jacquet-Langlands locale et congruences modulo ‘. Invent. Math. 208 (2017), no. 2, 553-631. · Zbl 1412.22035
[145] S. Morra, Invariant elements for p-modular representations of GL 2 .Q p /. Trans. Amer. Math. Soc. 365 (2013), no. 12, 6625-6667. · Zbl 1280.22021
[146] B. C. Ngo, Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1-169. · Zbl 1200.22011
[147] R. Ollivier, Le foncteur des invariants sous l’action du pro-p Iwahori de GL 2 .Q p /.
[148] J. Reine Angew. Math. 635 (2009), 149-185. · Zbl 1181.22017
[149] R. Ollivier, Parabolic Induction and Hecke modules in characteristic p for p-adic GL n . Algebra Number Theory 4 (2010), no. 6, 701-742. · Zbl 1243.22017
[150] R. Ollivier, Compatibility between Satake and Bernstein isomorphisms in charac-teristic p. Algebra Number Theory 8 (2014), no. 5, 1071-1111. · Zbl 1329.22010
[151] R. Ollivier, An inverse Satake isomorphism in characteristic p. Selecta Math. (N.S.) 21 (2015), no. 3, 727-761. · Zbl 1321.22023
[152] R. Ollivier and P. Schneider, Pro-p Iwahori Hecke algebras are Gorenstein. J. Inst. Math. Jussieu 13 (2014), no. 4, 753-809. · Zbl 1342.20004
[153] R. Ollivier and P. Schneider, A canonical torsion theory for pro-p Iwahori-Hecke modules. Adv. Math. 327 (2018), 52-127. · Zbl 1427.20007
[154] R. Ollivier and P. Schneider, The modular pro-p Iwahori-Hecke Ext-algebra. Proc. Sympos. Pure Math. 101 (2019), 255-308. · Zbl 1470.22005
[155] R. Ollivier and P. Schneider, On the pro-p Iwahori Hecke Ext-algebra of SL 2 .Q p /. 2021, arXiv:2104.13422v1.
[156] R. Ollivier and M.-F. Vignéras, Parabolic induction modulo p. Selecta Math. (N.S.) 24 (2018), no. 5, 3973-4039. · Zbl 1450.22008
[157] V. Paskunas, Coefficient systems and supersingular representations of GL 2 .F /.
[158] Mém. Soc. Math. Fr. (N.S.) 99 (2004).
[159] V. Paskunas, Extensions for supersingular representations of GL 2 .Q p /. Astérisque 331 (2010), 317-353. · Zbl 1204.22013
[160] V. Paskunas, The image of Colmez’s Montreal functor. Publ. Math. Inst. Hautes Études Sci. 188 (2013), 1-191. · Zbl 1297.22021
[161] V. Paskunas, Blocks for mod p representations of GL 2 .Q p /. In Automorphic forms and Galois representations, pp. 231-247, London Math. Soc. Lecture Note Ser. 415, Cambridge University Press, Cambridge, 2014. · Zbl 1365.11049
[162] V. Paskunas and S.-N. Tung, Finiteness properties of the category of mod p repre-sentations of GL 2 .Q p /. Forum Math. Sigma e80 (2021). · Zbl 1487.22019
[163] C. Pépin and T. Schmidt, Mod p Hecke algebras and dual equivariant coho-mology I: The case of GL 2 . 2019, arXiv:1907.08808.
[164] C. Pépin and T. Schmidt, A semisimple mod p Langlands correspondence in fam-ilies for GL 2 .Q p /. Preprint, 2020.
[165] C. Pépin and T. Schmidt, Generic and mod p Kazhdan-Lusztig theory for GL 2 . 2021, arXiv:2007.01364.
[166] D. Renard, Représentations des groupes réductifs p-adiques, Cours Spéc. 17, S.M.F., 2010. · Zbl 1186.22020
[167] A. Roche, Parabolic induction and the Bernstein decomposition. Compos. Math. 134 (2002), no. 2, 113-133. · Zbl 1014.22013
[168] A. Roche, Notes on the Bernstein decomposition. 2004.
[169] A. Roche, The Bernstein decomposition and the Bernstein centre. In Ottawa Lec-tures on Admissible Representations of Reductive p-Adic Groups, pp. 3-52, Fields Inst. Monogr. 26, American Mathematical Society, Providence, RI, 2009. · Zbl 1176.22015
[170] N. Ronchetti, A Satake homomorphism for the mod p derived Hecke algebra. 2019, arXiv:1808.06512.
[171] M. M. Schein, A family of irreducible supersingular representations of GL 2 .F / for some ramified p-adic fields. 2022, arXiv:2109.15244v2.
[172] S. Scherotzke and P. Schneider, Derived parabolic induction. Bull. Lond. Math. Soc. 54 (2022), no. 1, 264-274. · Zbl 1517.11053
[173] N. A. Schmidt, Generische pro-p-algebren, Diplomarbeit, 2009.
[174] N. A. Schmidt, Generic pro-p-Hecke algebras. 2017, arXiv:1801.00353v1.
[175] P. Schneider, Smooth representations and Hecke modules in characteristic p. Pacific J. Math. 279 (2015), 447-464. · Zbl 1359.16011
[176] P. Schneider and C. Sorensen, Duals in natural characteristic. 2022, arXiv:2202.01800v1.
[177] P. Scholze, The Local Langlands Correspondence for GL n over p-adic fields. Invent. Math. 192 (2013), no. 3, 663-715. · Zbl 1305.22025
[178] P. Scholze, On the p-adic cohomology of the Lubin-Tate tower, with an appendix of Michael Rapoport. Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 4, 811-863. · Zbl 1419.14031
[179] B. Schraen, Sur la présentation des représentations supersingulières de GL 2 .F /. J. Reine Angew. Math. 704 (2015), 187-208. · Zbl 1321.22025
[180] V. Sécherre and S. Stevens, Représentations lisses de GL.m; D/, IV, représenta-tions supercuspidales. J. Inst. Math. Jussieu 7 (2008), no. 3, 527-574. · Zbl 1140.22014
[181] V. Sécherre and S. Stevens, Smooth representations of GL.m; D/, VI: Semisimple types. Int. Math. Res. Not. (2011).
[182] V. Sécherre and S. Stevens, Block decomposition of the category of ‘-modular smooth representations of GL n .F / and its inner forms. Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 3, 669-709. · Zbl 1346.22009
[183] V. Sécherre and S. Stevens, Towards an explicit local Jacquet-Langlands cor-respondence beyond the cuspidal case. Compos. Math. 155 (2019), no. 10, 1853-1887. · Zbl 1491.22006
[184] D. Skodlerack, Cuspidal irreducible complex or ‘-modular representations of quaternionic forms of p-adic classical groups for odd p. 2019, arXiv:1907.02922v2.
[185] D. Skodlerack, Semisimple characters for inner forms II: Quaternionic inner forms of classical groups. Represent. Theory 24 (2020), no. 11, 323-359. · Zbl 1462.22003
[186] C. M. Sorensen, A proof of the Breuil-Schneider conjecture in the indecompos-able case. Ann. of Math. 177 (2013), 1-16.
[187] C. M. Sorensen, The Breuil-Schneider conjecture. A survey. In Adv. in the Theory of Numbers. Proceedings of the CNTA XIII, edited by A. Alaca, S. Alaca, and K. S. Williams, Fields Inst. Commun. 77, 2015. · Zbl 1383.11077
[188] C. M. Sorensen, A vanishing result for higher smooth duals. Algebra Number Theory 13 (2019), no. 7, 1735-1763. · Zbl 1515.20041
[189] S. Stevens, Semisimple characters for p-adic classical groups. Duke Math. J. 127 (2005), no. 1, 123-173. · Zbl 1063.22018
[190] S. Stevens, The supercuspidal representations of p-adic classical groups. Invent. Math. 172 (2008), 289-352. · Zbl 1140.22016
[191] J. Trias, Correspondance thêta locale ‘-modulaire I: Groupe métaplectique, représentation de Weil et Â-lift. 2020, arXiv:2009.11561.
[192] M.-F. Vignéras, On highest Whittaker models and integral structures. In Contri-butions to automorphic forms, geometry, and number theory, pp. 773-816, John Hopkins University Press, 2004.
[193] M.-F. Vignéras, Representations modulo p of the p-adic group GL.2; F /.
[194] Compos. Math. 140 (2004), 333-358. · Zbl 1049.22010
[195] M.-F. Vignéras, Pro-p Iwahori Hecke ring and supersingular F p -representations. Math. Ann. 331 (2005), no. 3, 523-556. Erratum: 333 (2005), no. 3, 699-701. · Zbl 1107.22011
[196] M.-F. Vignéras, Algèbres de Hecke affines génériques. Represent. Theory 10 (2006), 1-20. · Zbl 1134.22014
[197] M.-F. Vignéras, Représentations irréductibles de GL.2; F / modulo p. In L-functions and Galois representations, edited by B. N. Burns, LMS Lecture Notes 320, 2007.
[198] M.-F. Vignéras, Série principale modulo p de groupes réductifs p-adiques. Geom. Funct. Anal. 17 (2007), 2090-2112. · Zbl 1346.22010
[199] M.-F. Vignéras, Représentations p-adiques de torsion admissibles (shorter version of Admissibilité des représentations p-adiques et lemme de Nakayama, janvier 2007 (pdf)). In: Number Theory, Analysis and Geometry: In Memory of Serge Lang, edited by D. Golfeld, P. Jones, D. Ramakrishnan, K. Ribet, and J. Tate, Springer, 2011.
[200] M.-F. Vignéras, The pro-p Iwahori Hecke algebra of a reductive p-adic group II, Muenster. J. Math. 7 (2014), 363-379. · Zbl 1318.22009
[201] M.-F. Vignéras, The pro-p Iwahori Hecke algebra of a reductive p-adic group V (parabolic induction). Pacific J. Math. 279 (2015), 499-529. · Zbl 1332.22019
[202] M.-F. Vignéras, The pro-p Iwahori Hecke algebra of a reductive p-adic group I. Compos. Math. 152 (2016), 693-753. · Zbl 1408.11021
[203] M.-F. Vignéras, The right adjoint of the parabolic induction. In Hirzebruch Volume Proceedings Arbeitstagung 2013, pp. 405-424, Progr. Math. 319, Birkhäuser, 2016. · Zbl 1368.22011
[204] M.-F. Vignéras, The pro-p-Iwahori Hecke algebra of a reductive p-adic group III (spherical Hecke algebras and supersingular modules). J. Inst. Math. Jussieu 16 (2017), no. 3, 571-608. · Zbl 1472.22011
[205] J.-L. Waldspurger, Endoscopie et changement de caractéristique. J. Inst. Math. Jussieu 5 (2006), no. 3, 423-525. · Zbl 1102.22010
[206] J.-L. Waldspurger, Endoscopie et changement de caractéristique: intégrales orbitales pondérées. Ann. Inst. Fourier 59 (2009), no. 5, 1753-1818. · Zbl 1184.22003
[207] M. H. Weissman, An induction theorem for groups acting on trees. Represent. Theory 23 (2019), 205-212. · Zbl 1515.20271
[208] Z. Wu, A note on presentations of supersingular representations of GL 2 .F /. Manuscripta Math. 165 (2021), 583-596. · Zbl 1481.22019
[209] J. K. Yu, Construction of tame supercuspidal representations. J. Amer. Math. Soc. 14 (2001), 579-622. · Zbl 0971.22012
[210] J. K. Yu, Bruhat-Tits theory and buildings, pp. 53-77, On the local Langlands correspondence for tori, pp. 177-183. In Ottawa Lectures on Admissible Rep-resentations of Reductive p-Adic Groups, Fields Inst. Monogr. 26, American Mathematical Society, Providence, RI, 2009. · Zbl 1187.11045
[211] X. Zhu, The Geometric Satake Correspondence for Ramified Groups. Ann. Sci. Éc. Norm. Supér. 48 (2015), 409-451. · Zbl 1392.11036
[212] X. Zhu, Coherent sheaves in the stack of Langlands parameters. 2021, arXiv:2008.02998v2.
[213] X. Zhu, A note on integral Satake isomorphisms. 2021, arXiv:2005.13056v3. Marie-France Vignéras
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.