×

A functoriality principle for blocks of \(p\)-adic linear groups. (English) Zbl 1388.22013

Brumley, Farrell (ed.) et al., Around Langlands correspondences. International conference, Université Paris Sud, Orsay, France, June 17–20, 2015. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3573-8/pbk; 978-1-4704-4117-3/ebook). Contemp. Math. 691, 103-131 (2017).
Author’s abstract: Bernstein blocks of complex representations of \(p\)-adic reductive groups have been computed in a large number of examples, in part thanks to the theory of types à la Bushnell and Kutzko. The output of these purely representation-theoretic computations is that many of these blocks are equivalent. In this paper, we promote the idea that most of these coincidences are explained, and many more can be predicted, by a functoriality principle involving dual groups. We prove a precise statement for groups related to \(GL_{n}\), and then state conjectural generalizations in two directions: more general reductive groups and/or integral \(l\)-adic representations.
For the entire collection see [Zbl 1369.11002].

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] Bernstein, J. N., Le “centre” de Bernstein. Representations of reductive groups over a local field, Travaux en Cours, 1-32 (1984), Hermann, Paris · Zbl 0544.00007
[2] Borel, A., Automorphic \(L\)-functions. Automorphic forms, representations and \(L\)-functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977, Proc. Sympos. Pure Math., XXXIII, 27-61 (1979), Amer. Math. Soc., Providence, R.I. · Zbl 0412.10017
[3] Bushnell, Colin J.; Kutzko, Philip C., The admissible dual of \({\rm GL}(N)\) via compact open subgroups, Annals of Mathematics Studies 129, xii+313 pp. (1993), Princeton University Press, Princeton, NJ · Zbl 0787.22016 · doi:10.1515/9781400882496
[4] Bushnell, Colin J.; Kutzko, Philip C., Semisimple types in \({\rm GL}_n\), Compositio Math., 119, 1, 53-97 (1999) · Zbl 0933.22027 · doi:10.1023/A:1001773929735
[5] J.-F. Dat. Equivalences of tame blocks for \(p\)-adic linear groups. http://webusers.imj-prg.fr/ jean-francois.dat/recherche/travaux.php, 2015.
[6] DeBacker, Stephen; Reeder, Mark, Depth-zero supercuspidal \(L\)-packets and their stability, Ann. of Math. (2), 169, 3, 795-901 (2009) · Zbl 1193.11111 · doi:10.4007/annals.2009.169.795
[7] T. Haines. The stable Bernstein center and test functions for Shimura varieties. In EPSRC Durham Symposium on Automorphic Forms and Galois Representations, Durham, July 18-28, 2011. London Math. Soc., 2011. · Zbl 1377.11064
[8] Harris, Michael; Taylor, Richard, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies 151, viii+276 pp. (2001), Princeton University Press, Princeton, NJ · Zbl 1036.11027
[9] V. Heiermann. Local langlands correspondence for classical groups and affine hecke algebras. preprint arXiv:1502.04357[math.RT], 2015. · Zbl 1381.22014
[10] Helm, David, The Bernstein center of the category of smooth \(W(k)[{\rm GL}_n(F)]\)-modules, Forum Math. Sigma, 4, e11, 98 pp. (2016) · Zbl 1364.11097 · doi:10.1017/fms.2016.10
[11] Henniart, Guy, Une preuve simple des conjectures de Langlands pour \({\rm GL}(n)\) sur un corps \(p\)-adique, Invent. Math., 139, 2, 439-455 (2000) · Zbl 1048.11092 · doi:10.1007/s002220050012
[12] Henniart, Guy, Une caract\'erisation de la correspondance de Langlands locale pour \({\rm GL}(n)\), Bull. Soc. Math. France, 130, 4, 587-602 (2002) · Zbl 1029.22023
[13] Kottwitz, Robert E., Stable trace formula: cuspidal tempered terms, Duke Math. J., 51, 3, 611-650 (1984) · Zbl 0576.22020 · doi:10.1215/S0012-7094-84-05129-9
[14] Rogawski, J. D., On modules over the Hecke algebra of a \(p\)-adic group, Invent. Math., 79, 3, 443-465 (1985) · Zbl 0579.20037 · doi:10.1007/BF01388516
[15] Vign{\'e}ras, Marie-France, Induced \(R\)-representations of \(p\)-adic reductive groups, Selecta Math. (N.S.), 4, 4, 549-623 (1998) · Zbl 0943.22017 · doi:10.1007/s000290050040
[16] Vign{\'e}ras, Marie-France, Correspondance de Langlands semi-simple pour \({\rm GL}(n,F)\) modulo \({\ell}\not = p\), Invent. Math., 144, 1, 177-223 (2001) · Zbl 1031.11068 · doi:10.1007/s002220100134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.