×

Local Jacquet-Langlands corespondence and congruences modulo \(\ell\). (Correspondance de Jacquet-Langlands locale et congruences modulo \(\ell \).) (French. English summary) Zbl 1412.22035

The Jacquet-Langlands correspondence links together (isomorphism classes of) smooth irreducible representations of a general linear group over a \(p\)-adic field \(F\), with coefficients in an algebraic closed field \(\Omega\) of characteristic 0 and smooth irreducible \(\Omega\)-representations of one of its inner forms, that is a general linear group over a central division algebra \(D\) of finite dimension \(d^2\) over \(F\) (\(d\geq 2\)). It can be expressed in two ways (\(m\in \mathbb{N}^*\)):
(i)
a bijection \(\pi_{m,\Omega}\) between the sets \(\mathcal{D}(\mathrm{GL}_{m}(D),\Omega)\) and \(\mathcal{D}(\mathrm{GL}_{md}(F),\Omega)\) of irreducible essentially square integrable \(\Omega\)-representations of \(\mathrm{GL} _{m}(D)\) and \(\mathrm{GL} _{md}(F)\) respectively, characterized by a character identity;
(ii)
a homomorphism \(J_{m,\Omega}\), from the Grothendieck group of the category of smooth finite-length \(\Omega\)-representations of \(\mathrm{GL} _{md}(F)\), \(\mathcal{R}(\mathrm{GL} _{md}(F),\Omega)\), to that of \(\mathrm{GL} _{m}(D)\), \(\mathcal{R}(\mathrm{GL} _{m}(D),\Omega)\), whose restriction to \(\mathcal{D}(\mathrm{GL} _{md}(F),\Omega)\) is the inverse bijection of \(\pi_{m,\Omega}\).
When \(\Omega\) is an algebraic closure \(\overline {\mathbb{Q}}_{\ell}\) of \(\mathbb{Q}_{\ell}\) (\(\ell \neq p\)), we distinguish the set of integral representations over which a reduction modulo \(\ell\) map is defined with image in the set of \(\ell\)-modular representations. The purpose of this paper is to prove that the Jacquet-Langlands correspondence can be reduced modulo \(\ell\), more precisely, that if two integral representations have the same reduction modulo \(\ell\) then so are their images under \(\pi_{m,\Omega}\) or \(J_{m,\Omega}\) (Theorems 1.1 and 1.16 resp.).
In his paper [Proc. Lond. Math. Soc. 104, No 4, 690–727 (2012; Zbl 1247.14025)], J.-F. Dat investigated this question in the case \(m=1\) in order to define a modular Jacquet-Langlands correspondence. The outline of his proof and the theory of Brauer characters that he develops are also found in the proof of the first theorem.
This proof can be divided into three steps. First, the authors reduce the general case to the case of a correspondence between essentially square integrable representations of \(G=\mathrm{GL} _{m}(D)\) and the ones of the multiplicative group \(A\) of a central division algebra of dimension \((md)^2\) over \(F\). Secondly, they extend this correspondence into a group homomorphism \(\mathbf{J}_{\overline {\mathbb{Q}}_{\ell}}\) from the Grothendieck group \(\mathcal{R}(G,\overline {\mathbb{Q}}_{\ell})\) to the one of \(A\) and, following the same line of reasoning as Dat [loc. cit.], they define an analog \(\mathbf{J}_{\overline {\mathbb{F}}_{\ell}}\) from \(\mathcal{R}(G,\overline {\mathbb{F}}_{\ell})\) to \(\mathcal{R}(A,\overline {\mathbb{F}}_{\ell})\) which is compatible to \(\mathbf{J}_{\overline {\mathbb{Q}}_{\ell}}\) by reduction modulo \(\ell\). The third and awkward step is the study of the image under the reduction modulo \(\ell\) map of the set of integral Speh \(\overline {\mathbb{Q}}_{\ell}\)-representations.
With this aim in mind, the authors develop an original argument to count the classes of \(\ell\)-modular representations which leave in the image under the reduction modulo \(\ell\) map of the set of inertial classes of integral Speh representations based on the definition of a new invariant attached to an integral Speh representation and preserved by \(\mathbf{J}_{\overline {\mathbb{Q}}_{\ell}}\), on an extension of the numerical criterium of Dat [loc. cit.] and on the theory of types. While doing this, they prove a compatibility by reduction modulo \(\ell\) property of the Zelevinski classification [A. Minguez and V. Sécherre, Duke Math. J. 163, No 4, 795–885 (2014; Zbl 1293.22005)] (Proposition 8.7) as a consequence of an explicit calculation of the reduction modulo \(\ell\) of an integral Speh representation. They prove also that the image by \(\mathbf{J}_{\overline {\mathbb{F}}_{\ell}}\) of the reduction modulo \(\ell\) of an integral Speh representation is an effective virtual representation up to a sign and deduce as a corollary a bijection between the set of super-Speh \(\overline {\mathbb{F}}_{\ell}\)- representations of \(G\) (that is, the ones whose cuspidal support is supercuspidal) and the set of irreducible \(\overline {\mathbb{F}}_{\ell}\)- representations of \(A\).
This last result is the starting point of the proof of the second theorem. In this proof, the authors introduce the rings \(\mathcal{R}(R,\overline {\mathbb{Q}}_{\ell})\), direct sum of all \(\mathcal{R}(\mathrm{GL} _{m}(R),\overline {\mathbb{Q}}_{\ell})\), \(m\in \mathbb{N}\) (with \(\mathcal{R}(\mathrm{GL} _{0}(R),\overline {\mathbb{Q}}_{\ell})=\mathbb{Z}\)), where \(R\) denotes \(F\) or \(D\). Then they consider the unique ring homomorphism \(\widetilde {\mathbf{B}}_{\ell}\) from \(\mathcal{R}(F,\overline {\mathbb{Q}}_{\ell})\) to \(\mathcal{R}(D,\overline {\mathbb{Q}}_{\ell})\) induced by the set of the homomorphisms \(J_{m,\overline {\mathbb{Q}}_{\ell}}\), \(m\in \mathbb{N}^*\), as defined by A. I. Badulescu [J. Inst. Math. Jussieu 6, No 3, 349–379 (2007; Zbl 1159.22005)]. Using the last mentioned corollary, the authors define a homomorphism from the commutative \(\mathbb{Z}\)-algebra \(\mathcal{R}(F,\overline {\mathbb{F}}_{\ell})\) generated by the set of super-Speh \(\overline {\mathbb{F}}_{\ell}\)-representations of \(\mathrm{GL} _{m}(F)\) for all \(m\in \mathbb{N}^*\), to the “similar” commutative \(\mathbb{Z}\)-algebra \(\mathcal{R}(D,\overline {\mathbb{F}}_{\ell})\) which is compatible to \(\widetilde {\mathbf{B}}_{\ell}\) by reduction modulo \(\ell\) on the set of all integral representations in \(\mathcal{R}(F,\overline {\mathbb{Q}}_{\ell})\) whose reduction modulo \(\ell\) are super-Speh. Next, they prove that this property extends to the set of all integral Speh representations in \(\mathcal{R}(F,\overline {\mathbb{Q}}_{\ell})\) by writing down the reduction modulo \(\ell\) of such a representation in terms of super-Speh \(\overline {\mathbb{F}}_{\ell}\)-representations.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
11F70 Representation-theoretic methods; automorphic representations over local and global fields

References:

[1] Aubert, A.-M., Baum, P., Plymen, R., Solleveld, M.: Depth and the local Langlands correspondence (prépublication) (2013) · Zbl 1388.22010
[2] Badulescu, A.I.: Correspondance de Jacquet-Langlands en caractéristique non nulle. Ann. Sci. Écol. Norm. Sup. (4) 35, 695-747 (2002) · Zbl 1092.11025 · doi:10.1016/S0012-9593(02)01106-0
[3] Badulescu, A.I.: Jacquet-Langlands et unitarisabilité. J. Inst. Math. Jussieu 6(3), 349-379 (2007) · Zbl 1159.22005 · doi:10.1017/S1474748007000035
[4] Badulescu, A.I., Henniart, G., Lemaire, B., Sécherre, V.: Sur le dual unitaire de \[{\rm GL}_r(D)\] GLr(D). Am. J. Math. 132(5), 1365-1396 (2010) · Zbl 1205.22011 · doi:10.1353/ajm.2010.0009
[5] Broussous, P., Sécherre, V., Stevens, S.: Smooth representations of \[{\rm GL}(m, D)\] GL(m,D), V: endo-classes. Doc. Math. 17, 23-77 (2012) · Zbl 1280.22018
[6] Bushnell, C., Henniart, G.: Counting the discrete series for \[{\rm GL}(n)\] GL(n). Bull. Lond. Math. Soc. 39(1), 133-137 (2007) · Zbl 1138.22012 · doi:10.1112/blms/bdl024
[7] Bushnell, C., Henniart, G.: The essentially tame Jacquet-Langlands correspondence for inner forms of \[{\rm GL}(n)\] GL(n). Pure Appl. Math. Q. 7(3), 469-538 (2011) · Zbl 1244.11053 · doi:10.4310/PAMQ.2011.v7.n3.a2
[8] Bushnell, C., Henniart, G.: Modular local Langlands correspondence for \[{\rm GL}_n\] GLn. Int. Math. Res. Not. 15, 4124-4145 (2014) · Zbl 1302.22011
[9] Bushnell, C., Henniart, G., Lemaire, B.: Caractère et degré formel pour les formes intérieures de \[{\rm GL}(n)\] GL(n) sur un corps local de caractéristique non nulle. Manuscr. Math. 131(1-2), 11-24 (2010) · Zbl 1181.22015 · doi:10.1007/s00229-009-0309-9
[10] Dat, J.-F.: Théorie de Lubin-Tate non-abélienne \[\ell\] ℓ-entière. Duke Math. J. 161(6), 951-1010 (2012) · Zbl 1260.11070 · doi:10.1215/00127094-1548425
[11] Dat, J.-F.: Un cas simple de correspondance de Jacquet-Langlands modulo \[\ell\] ℓ. Proc. Lond. Math. Soc. 104, 690-727 (2012) · Zbl 1241.22020 · doi:10.1112/plms/pdr043
[12] Deligne, P., Kazhdan, D., Vignéras, M.-F.: Représentations des algèbres centrales simples \[p\] p-adiques, Representations of Reductive Groups Over a Local Field. Hermann, Paris (1984) · Zbl 1253.22011
[13] Dipper, R.: On the decomposition numbers of the finite general linear groups. II. Trans. Am. Math. Soc. 292(1), 123-133 (1985) · Zbl 0579.20008 · doi:10.1090/S0002-9947-1985-0805956-7
[14] Dipper, R., James, G.: Identification of the irreducible modular representations of \[{\rm GL}_n(q)\] GLn(q). J. Algebra 104(2), 266-288 (1986) · Zbl 0622.20032 · doi:10.1016/0021-8693(86)90215-2
[15] Green, J.A.: The characters of the finite general linear groups. J. Algebra 184(3), 839-851 (1996) · Zbl 0859.20009 · doi:10.1006/jabr.1996.0287
[16] James, G.: The irreducible representations of the finite general linear groups. Proc. Lond. Math. Soc. (3) 52(2), 236-268 (1986) · Zbl 0587.20022 · doi:10.1112/plms/s3-52.2.236
[17] Jacquet, H., Langlands, R.P.: Automorphic forms on \[{\rm GL}(2)\] GL(2), Lecture Notes in Mathematics, vol. 114. Springer, New York (1970) · Zbl 0236.12010
[18] Kret, A., Lapid, E.: Jacquet modules of ladder representations. C. R. Math. Acad. Sci. Paris 350(21-22), 937-940 (2012) · Zbl 1253.22011 · doi:10.1016/j.crma.2012.10.014
[19] Mínguez, A., Sécherre, V.: Représentations banales de \[{\rm GL}(m, D)\] GL(m,D). Compos. Math. 149, 679-704 (2013) · Zbl 1283.22014 · doi:10.1112/S0010437X12000590
[20] Mínguez, A., Sécherre, V.: Représentations lisses modulo \[\ell\] ℓ de \[{{\rm GL}}_m({\rm D})\] GLm(D). Duke Math. J. 163, 795-887 (2014) · Zbl 1293.22005 · doi:10.1215/00127094-2430025
[21] M��nguez, A., Sécherre, V.: Types modulo \[\ell\] ℓ pour les formes intérieures de \[{\rm GL}_n\] GLn sur un corps local non archimédien. Avec un appendice par V. Sécherre et S. Stevens. Proc. Lond. Math. Soc. 109(4), 823-891 (2014) · Zbl 1302.22013 · doi:10.1112/plms/pdu020
[22] Mínguez, A., Sécherre, V.: Représentations modulaires de \[{\rm GL}_n(q)\] GLn(q) en caractéristique non naturelle. Trends Number Theory Contemp. Math. 649, 163-183 (2015) · Zbl 1346.20064 · doi:10.1090/conm/649/13025
[23] Mínguez, A., Sécherre, V.: L’involution de Zelevinski modulo \[\ell\] ℓ. Represent. Theory 19, 236-262 (2015) · Zbl 1326.22017 · doi:10.1090/ert/466
[24] Rogawski, J.: Representations of \[{\rm GL}(n)\] GL(n) and division algebras over a \[p\] p-adic field. Duke Math. J. 50, 161-196 (1983) · Zbl 0523.22015 · doi:10.1215/S0012-7094-83-05006-8
[25] Sécherre, V., Stevens, S.: Smooth representations of \[{\rm GL}(m, D)\] GL(m,D), VI: semisimple types. Int. Math. Res. Not. 13, 2994-3039 (2012) · Zbl 1246.22023
[26] Sécherre, V., Stevens, S.: Block decomposition of the category of \[\ell\] ℓ-modular smooth representations of \[{\rm GL}_n({\rm F})\] GLn(F) and its inner forms. Ann. Sci. Écol. Norm. Sup. 49(3), 669-709 (2016) · Zbl 1346.22009 · doi:10.24033/asens.2293
[27] Vignéras, M.-F.: Représentations \[l\] l-modulaires d’un groupe réductif \[p\] p-adique avec \[l\ne p\] l≠p, Progress in Mathematics, vol. 137. Birkhäuser Boston Inc., Boston (1996) · Zbl 0859.22001
[28] Vignéras, M.-F.: Correspondance de Langlands semi-simple pour \[{\rm GL}_n({\rm F})\] GLn(F) modulo \[\ell \ne p\] ℓ≠p. Invent. Math 144, 177-223 (2001) · Zbl 1031.11068 · doi:10.1007/s002220100134
[29] Vignéras, M.-F.: On Highest Whittaker Models and Integral Structures, Contributions to Automorphic Forms, Geometry and Number Theory. John Hopkins Univ. Press, Shalikafest, pp. 773-801 (2002) · Zbl 1084.11023
[30] Zelevinsky, A.V.: Induced representations of reductive \[{\mathfrak{p}}\] p-adic groups. II. On irreducible representations of \[{\rm GL}(n)\] GL(n). Ann. Sci. Écol. Norm. Sup (4) 13(2), 165-210 (1980) · Zbl 0441.22014 · doi:10.24033/asens.1379
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.