×

Integrability of oscillatory functions on local fields: transfer principles. (English) Zbl 1327.14073

Summary: For oscillatory functions on local fields coming from motivic exponential functions, we show that integrability over \(\mathbb{Q}_p^n\) implies integrability over \(\mathbb{F}_p((t))^n\) for large \(p\), and vice versa. More generally, the integrability only depends on the isomorphism class of the residue field of the local field, once the characteristic of the residue field is large enough. This principle yields general local integrability results for Harish-Chandra characters in positive characteristic as we show in other work. Transfer principles for related conditions such as boundedness and local integrability are also obtained. The proofs rely on a thorough study of loci of integrability, to which we give a geometric meaning by relating them to zero loci of functions of a specific kind.

MSC:

14E18 Arcs and motivic integration
22E50 Representations of Lie and linear algebraic groups over local fields
40J99 Summability in abstract structures

References:

[1] J. Ax and S. Kochen, Diophantine problems over local fields, I , Amer. J. Math. 87 (1965), 605-630. · Zbl 0136.32805 · doi:10.2307/2373065
[2] R. Cluckers, Presburger sets and \(p\)-minimal fields , J. Symbolic Logic 68 (2003), 153-162. · Zbl 1046.03019 · doi:10.2178/jsl/1045861509
[3] R. Cluckers, Analytic \(p\)-adic cell decomposition and integrals , Trans. Amer. Math. Soc. 356 (2004), no. 4, 1489-1499. · Zbl 1048.11094 · doi:10.1090/S0002-9947-03-03458-5
[4] R. Cluckers, G. Comte, and F. Loeser, Lipschitz continuity properties for \(p\)-adic semi-algebraic and subanalytic functions , Geom. Funct. Anal. 20 (2010), 68-87. · Zbl 1220.12003 · doi:10.1007/s00039-010-0060-0
[5] R. Cluckers, J. Gordon, and I. Halupczok, Local integrability results in harmonic analysis on reductive groups in large positive characteristic , to appear in Ann. Sci. Ecol. Norm. Sup. Quatr. Ser., preprint, [math.RT]. 1111.7057v4 · Zbl 1315.22010
[6] R. Cluckers, T. Hales, and F. Loeser, “Transfer principle for the fundamental lemma” in On the Stabilization of the Trace Formula , Stab. Trace Formula Shimura Var. Arith. Appl. 1 , International Press, Somerville, Mass., 2011, 309-347.
[7] R. Cluckers and L. Lipshitz, Fields with analytic structure , J. Eur. Math. Soc. (JEMS) 13 (2011), 1147-1223. · Zbl 1291.03074 · doi:10.4171/JEMS/278
[8] R. Cluckers and F. Loeser, Constructible motivic functions and motivic integration , Invent. Math. 173 (2008), 23-121. · Zbl 1179.14011 · doi:10.1007/s00222-008-0114-1
[9] R. Cluckers and F. Loeser, Constructible exponential functions, motivic Fourier transform and transfer principle , Ann. of Math. (2) 171 (2010), 1011-1065. · Zbl 1246.14025 · doi:10.4007/annals.2010.171.1011
[10] R. Cluckers and F. Loeser, Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero , to appear in J. Reine Angew. Math., preprint, [math.AG]. 1102.3832v2 · Zbl 1316.14032
[11] J. Denef, Proof of a conjecture of Colliot-Thélène , preprint, [math.AG]. 1108.6250v1
[12] J. Denef, “On the evaluation of certain \(p\)-adic integrals” in Séminaire de théorie des nombres, Paris 1983-84 , Progr. Math. 59 , Birkhäuser, Boston, 1985, 25-47. · Zbl 0597.12021
[13] J. Denef, \(p\)-adic semi-algebraic sets and cell decomposition , J. Reine Angew. Math. 369 (1986), 154-166. · Zbl 0584.12015 · doi:10.1515/crll.1986.369.154
[14] J. Denef, “Arithmetic and geometric applications of quantifier elimination for valued fields” in Model theory, algebra, and geometry , Math. Sci. Res. Inst. Publ. 39 , Cambridge Univ. Press, Cambridge, 2000, 173-198. · Zbl 0981.03041
[15] J. Denef and L. van den Dries, \(p\)-adic and real subanalytic sets , Ann. of Math. (2) 128 (1988), 79-138. · Zbl 0693.14012 · doi:10.2307/1971463
[16] H. Glöckner, Comparison of some notions of \(C^{k}\)-maps in multi-variable non-Archimedean analysis , Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 877-904. · Zbl 1173.26326
[17] Harish-Chandra, Admissible invariant distributions on reductive \(p\)-adic groups , Univ. Lecture Ser. 16 , Amer. Math. Soc., Providence, 1999. · Zbl 0928.22017
[18] E. Hrushovski and D. Kazhdan, “Integration in valued fields” in Algebraic Geometry and Number Theory , Progr. Math. 253 , Birkhäuser, Boston, 2006, 261-405. · Zbl 1136.03025 · doi:10.1007/978-0-8176-4532-8_4
[19] B. Lemaire, Intégrabilité locale des caractères-distributions de \(\operatorname{GL}_{N}(f)\) où \(F\) est un corps local non-archimédien de caractéristique quelconque , Compos. Math. 100 (1996), 41-75. · Zbl 0856.22024
[20] A. Macintyre, On definable subsets of \(p\)-adic fields , J. Symbolic Logic 41 (1976), 605-610. · Zbl 0362.02046 · doi:10.2307/2272038
[21] B. C. Ngô, Le lemme fondamental pour les algèbres de Lie , Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1-169. · Zbl 1200.22011 · doi:10.1007/s10240-010-0026-7
[22] J. Pas, Uniform \(p\)-adic cell decomposition and local zeta functions , J. Reine Angew. Math. 399 (1989), 137-172. · Zbl 0666.12014 · doi:10.1515/crll.1989.399.137
[23] M. Presburger, On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation , Hist. Philos. Logic 12 (1991), 225-233. · Zbl 0741.03027 · doi:10.1080/014453409108837187
[24] L. van den Dries, Tame Topology and o-minimal Structures , London Math. Soc. Lecture Note Ser. 248 , Cambridge Univ. Press, Cambridge, 1998. · Zbl 0953.03045
[25] L. van den Dries, D. Haskell, and D. Macpherson, One-dimensional \(p\)-adic subanalytic sets , J. London Math. Soc. (2) 59 (1999), 1-20. · Zbl 0932.03038 · doi:10.1112/S0024610798006917
[26] J.-L. Waldspurger, Endoscopie et changement de caractéristique , J. Inst. Math. Jussieu 5 (2006), 423-525. · Zbl 1102.22010 · doi:10.1017/S1474748006000041
[27] A. J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , J. Amer. Math. Soc. 9 (1996), 1051-1094. · Zbl 0892.03013 · doi:10.1090/S0894-0347-96-00216-0
[28] Z. Yun, The fundamental lemma of Jacquet and Rallis , with an appendix by J. Gordon, Duke Math. J. 156 (2011), 167-227. · Zbl 1211.14039 · doi:10.1215/00127094-2010-210
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.