×

The \(\ell \)-modular local Langlands correspondence and local constants. (English) Zbl 1490.22011

The \(l\)-adic local Langlands correspondence has an important property that Rankin-Selberg local constants of a pair of irreducible \(l\)-adic representations of \(\mathrm{GL}_n(F)\) and \(\mathrm{GL}_m(F)\), and the Artin-Deligne local constants of the corresponding tensor product of Deligne representations of \(W_F\) are equal.
Furthermore, Vignéras developed the theory of \(l\)-modular representations of reductive \(p\)-adic group with the culmination in the \(l\)-modular local Langlands correspondence for general linear groups. In contrast to the \(l\)-adic correspondence, the generalized Rankin-Selberg local constants for \(l\)-modular generic representations of general linear groups are not equal to the factors of Artin-Deligne.
In this paper the authors classify the \(l\)-modular indecomposable \(W_F\)-semisimple Deligne representations, extend the definitions of Artin-Deligne factors to this setting, and define an \(l\)-modular local Langlands correspondence where in the generic case, the Rankin-Selberg factors of representations on one side equal the Artin-Deligne factors of the corresponding representations on the other.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
11F70 Representation-theoretic methods; automorphic representations over local and global fields

References:

[1] Aubert, A.-M., Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique, Trans. Amer. Math. Soc.347(6) (1995), 2179-2189. · Zbl 0827.22005
[2] Bernstein, I. N. and Zelevinsky, A. V., Induced representations of reductive p-adic groups. I, Ann. Sci. Éc. Norm. Supér. (4)10(4) (1977), 441-472. · Zbl 0412.22015
[3] Bushnell, C. J. and Henniart, G., The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 335 (Springer-Verlag, Berlin, 2006). · Zbl 1100.11041
[4] Bushnell, C. J. and Henniart, G., Modular local Langlands correspondence for GL_n, Int. Math. Res. Not. IMRN2014(15) (2014), 4124-4145. · Zbl 1302.22011
[5] Dat, J.-F., Lefschetz operator and local Langlands mod ℓ: the regular case, Nagoya Math. J.208 (2012), 1-38. · Zbl 1328.11114
[6] Dat, J.-F., Lefschetz operator and local Langlands modulo ℓ: the limit case, Algebra Number Theory8(3) (2014), 729-766. · Zbl 1329.11126
[7] Deligne, P., Formes modulaires et représentations de GL(2), in Modular Functions of One Variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics, volume 349, pp. 55-105. (1973). · Zbl 0271.10032
[8] Deligne, P., Les constantes des équations fonctionnelles des fonctions L, in Modular Functions of One Variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics, volume 349, pp. 501-597 (Springer, Berlin, 1973). · Zbl 0271.14011
[9] Emerton, M. and Helm, D., The local Langlands correspondence for GL_n in families, Ann. Sci. Éc. Norm. Supér. (4)47(4) (2014), 655-722. · Zbl 1321.11055
[10] Helm, D., On the modified mod p local Langlands correspondence for GL_2(ℚ_ℓ), Math. Res. Lett.20(3) (2013), 489-500. · Zbl 1294.11073
[11] Helm, D. and Moss, G., Gamma factors in deformation rings, preprint, 2017, arXiv:1510.08743v2.
[12] Kurinczuk, R. and Matringe, N., Rankin-Selberg local factors modulo ℓ, Selecta Math. (N.S.)23(1) (2017), 767-811. · Zbl 1385.11033
[13] Mínguez, A., Fonctions zêta ℓ-modulaires, Nagoya Math. J.208 (2012), 39-65. · Zbl 1282.11157
[14] Mínguez, A. and Sécherre, V., Représentations lisses modulo ℓ de GL_m(D), Duke Math. J.163(4) (2014), 795-887. · Zbl 1293.22005
[15] Mínguez, A. and Sécherre, V., L’involution de Zelevinski modulo ℓ, Represent. Theory19 (2015), 236-262. · Zbl 1326.22017
[16] Rohrlich, D. E., Elliptic curves and the Weil-Deligne group, in Elliptic Curves and Related Topics, CRM Proceedings & Lecture Notes, volume 4, pp. 125-157 (American Mathematical Society, Providence, RI, 1994). · Zbl 0852.14008
[17] Serre, J.-P., Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math.116(1-3) (1994), 513-530. · Zbl 0816.20014
[18] Tate, J. T., Fourier analysis in number fields, and Hecke’s zeta-functions, in Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pp. 305-347 (Thompson, Washington, DC, 1967). · Zbl 1492.11154
[19] Vignéras, M.-F., Représentations ℓ-modulaires d’un groupe réductif p-adique avec ℓ≠p, Progress in Mathematics, Volume 137 (Birkhäuser Boston Inc., Boston, MA, 1996). · Zbl 0859.22001
[20] Vignéras, M.-F., à propos d’une conjecture de Langlands modulaire, in Finite Reductive Groups (Luminy, 1994), Progress in Mathematics, Volume 141, pp. 415-452 (Birkhäuser Boston, Boston, MA, 1997). · Zbl 0893.11048
[21] Vignéras, M.-F., Cohomology of sheaves on the building and R-representations, Invent. Math.127(2) (1997), 349-373. · Zbl 0872.20042
[22] Vignéras, M.-F., Induced R-representations of p-adic reductive groups, Selecta Math. (N.S.)4(4) (1998), 549-623. · Zbl 0943.22017
[23] Vignéras, M.-F., Congruences modulo ℓ between 𝜖 factors for cuspidal representations of GL(2), J. Théor. Nombres Bordeaux12(2) (2000), 571-580. Colloque International de Théorie des Nombres (Talence, 1999). · Zbl 0974.11022
[24] Vignéras, M.-F., Correspondance de Langlands semi-simple pour GL(n, F) modulo l ≠ p, Invent. Math.144(1) (2001), 177-223. · Zbl 1031.11068
[25] Vignéras, M.-F., La conjecture de Langlands locale pour GL(n, F) modulo l quand l ≠ p, l > n, Ann. Sci. Éc. Norm. Supér. (4)34(6) (2001), 789-816. · Zbl 1013.11080
[26] Vignéras, M.-F., On highest Whittaker models and integral structures, in Contributions to Automorphic Forms, Geometry, and Number Theory, pp. 773-801 (Johns Hopkins Univ. Press, Baltimore, MD, 2004). · Zbl 1084.11023
[27] Zelevinsky, A. V., Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. Éc. Norm. Supér. (4)13(2) (1980), 165-210. · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.