×

Gravity coupled to a scalar field from a Chern-Simons action: describing rotating hairy black holes and solitons with gauge fields. (English) Zbl 1541.83038

Summary: Einstein gravity minimally coupled to a scalar field with a two-parameter Higgs-like self-interaction in three spacetime dimensions is recast in terms of a Chern-Simons form for the algebra \(g^+ \oplus g^-\) where, depending on the sign of the self-interaction couplings, \(g^\pm\) can be \(so(2, 2)\), \(so(3, 1)\) or \(iso(2, 1)\). The field equations can then be expressed through the field strength of non-flat composite gauge fields, and conserved charges are readily obtained from boundary terms in the action that agree with those of standard Chern-Simons theory for pure gravity, but with non-flat connections. Regularity of the fields then amounts to requiring the holonomy of the connections along contractible cycles to be trivial. These conditions are automatically fulfilled for the scalar soliton and allow to recover the Hawking temperature and chemical potential in the case of the rotating hairy black holes presented here, whose entropy can also be obtained by the same formula that holds in the case of a pure Chern-Simons theory. In the conformal (Jordan) frame the theory is described by General Relativity with cosmological constant conformally coupled to a self-interacting scalar field, and its formulation in terms of a Chern-Simons form for suitably composite gauge fields is also briefly addressed.

MSC:

83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E50 Supergravity
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] A. Achúcarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B180 (1986) 89 [INSPIRE].
[2] E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B311 (1988) 46 [INSPIRE]. · Zbl 1258.83032
[3] S. Carlip, Lectures on (2 + 1) dimensional gravity, J. Korean Phys. Soc.28 (1995) S447 [gr-qc/9503024] [INSPIRE]. · Zbl 0833.53063
[4] O. Coussaert, M. Henneaux and P. van Driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav.12 (1995) 2961 [gr-qc/9506019] [INSPIRE]. · Zbl 0836.53052
[5] Kraus, P., Lectures on black holes and the AdS_3/CFT_2correspondence, Lect. Notes Phys., 755, 193 (2008) · Zbl 1155.83303
[6] Maloney, A.; Witten, E., Quantum Gravity Partition Functions in Three Dimensions, JHEP, 02, 029 (2010) · Zbl 1270.83022 · doi:10.1007/JHEP02(2010)029
[7] Barnich, G.; González, HA, Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity, JHEP, 05, 016 (2013) · Zbl 1342.83033 · doi:10.1007/JHEP05(2013)016
[8] Afshar, H., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.101503
[9] Pérez, A.; Tempo, D.; Troncoso, R., Boundary conditions for General Relativity on AdS_3and the KdV hierarchy, JHEP, 06, 103 (2016) · Zbl 1388.83028 · doi:10.1007/JHEP06(2016)103
[10] Fuentealba, O., Integrable systems with BMS_3Poisson structure and the dynamics of locally flat spacetimes, JHEP, 01, 148 (2018) · Zbl 1384.81046 · doi:10.1007/JHEP01(2018)148
[11] Cotler, J.; Jensen, K., A theory of reparameterizations for AdS_3gravity, JHEP, 02, 079 (2019) · Zbl 1411.83079 · doi:10.1007/JHEP02(2019)079
[12] D. Melnikov, F. Novaes, A. Pérez and R. Troncoso, Lifshitz Scaling, Microstate Counting from Number Theory and Black Hole Entropy, JHEP06 (2019) 054 [arXiv:1808.04034] [INSPIRE].
[13] González, HA; Matulich, J.; Pino, M.; Troncoso, R., Revisiting the asymptotic dynamics of General Relativity on AdS_3, JHEP, 12, 115 (2018) · Zbl 1405.83005 · doi:10.1007/JHEP12(2018)115
[14] Grumiller, D.; Merbis, W., Near horizon dynamics of three dimensional black holes, SciPost Phys., 8, 010 (2020) · doi:10.21468/SciPostPhys.8.1.010
[15] Ojeda, E.; Pérez, A., Boundary conditions for General Relativity in three-dimensional spacetimes, integrable systems and the KdV/mKdV hierarchies, JHEP, 08, 079 (2019) · Zbl 1421.83074 · doi:10.1007/JHEP08(2019)079
[16] Cárdenas, M.; Correa, F.; Lara, K.; Pino, M., Integrable Systems and Spacetime Dynamics, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.161601
[17] A. Achúcarro and P.K. Townsend, Extended Supergravities in d = (2 + 1) as Chern-Simons Theories, Phys. Lett. B229 (1989) 383 [INSPIRE].
[18] Howe, PS; Izquierdo, JM; Papadopoulos, G.; Townsend, PK, New supergravities with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B, 467, 183 (1996) · Zbl 1003.83518 · doi:10.1016/0550-3213(96)00091-0
[19] M. Bañados, R. Troncoso and J. Zanelli, Higher dimensional Chern-Simons supergravity, Phys. Rev. D54 (1996) 2605 [gr-qc/9601003] [INSPIRE].
[20] Henneaux, M.; Maoz, L.; Schwimmer, A., Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys., 282, 31 (2000) · Zbl 0976.83064 · doi:10.1006/aphy.2000.5994
[21] Giacomini, A.; Troncoso, R.; Willison, S., Three-dimensional supergravity reloaded, Class. Quant. Grav., 24, 2845 (2007) · Zbl 1117.83112 · doi:10.1088/0264-9381/24/11/005
[22] Barnich, G.; Donnay, L.; Matulich, J.; Troncoso, R., Asymptotic symmetries and dynamics of three-dimensional flat supergravity, JHEP, 08, 071 (2014) · doi:10.1007/JHEP08(2014)071
[23] Barnich, G.; Donnay, L.; Matulich, J.; Troncoso, R., Super-BMS_3invariant boundary theory from three-dimensional flat supergravity, JHEP, 01, 029 (2017) · Zbl 1373.83080 · doi:10.1007/JHEP01(2017)029
[24] Fuentealba, O.; Matulich, J.; Troncoso, R., Asymptotic structure of 𝒩 = 2 supergravity in 3D: extended super-BMS_3and nonlinear energy bounds, JHEP, 09, 030 (2017) · Zbl 1382.83117 · doi:10.1007/JHEP09(2017)030
[25] Caroca, R.; Concha, P.; Fierro, O.; Rodríguez, E., Three-dimensional Poincaré supergravity and N -extended supersymmetric BMS_3algebra, Phys. Lett. B, 792, 93 (2019) · Zbl 1416.83135 · doi:10.1016/j.physletb.2019.02.049
[26] N. Banerjee, A. Bhattacharjee, Neetu and T. Neogi, New 𝒩 = 2 SuperBMS_3algebra and invariant dual theory for 3D supergravity, JHEP11 (2019) 122 [arXiv:1905.10239] [INSPIRE].
[27] Caroca, R.; Concha, P.; Fierro, O.; Rodríguez, E., On the supersymmetric extension of asymptotic symmetries in three spacetime dimensions, Eur. Phys. J. C, 80, 29 (2020) · doi:10.1140/epjc/s10052-019-7595-5
[28] Banerjee, N.; Bhattacharjee, A.; Biswas, S.; Neogi, T., Dual theory for maximally 𝒩 extended flat supergravity, JHEP, 05, 179 (2022) · Zbl 1522.83365 · doi:10.1007/JHEP05(2022)179
[29] M.P. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2 + 1), Class. Quant. Grav.6 (1989) 443 [INSPIRE].
[30] E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area Preserving Diffeomorphisms and Higher Spin Algebra, Commun. Math. Phys.128 (1990) 213 [INSPIRE]. · Zbl 0707.17019
[31] Henneaux, M.; Rey, S-J, Nonlinear W_∞as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP, 12, 007 (2010) · Zbl 1294.81137 · doi:10.1007/JHEP12(2010)007
[32] Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S., Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP, 11, 007 (2010) · Zbl 1294.81240 · doi:10.1007/JHEP11(2010)007
[33] Gutperle, M.; Kraus, P., Higher Spin Black Holes, JHEP, 05, 022 (2011) · Zbl 1296.81100 · doi:10.1007/JHEP05(2011)022
[34] Ammon, M.; Gutperle, M.; Kraus, P.; Perlmutter, E., Spacetime Geometry in Higher Spin Gravity, JHEP, 10, 053 (2011) · Zbl 1303.83019 · doi:10.1007/JHEP10(2011)053
[35] Castro, A.; Hijano, E.; Lepage-Jutier, A.; Maloney, A., Black Holes and Singularity Resolution in Higher Spin Gravity, JHEP, 01, 031 (2012) · Zbl 1306.81084 · doi:10.1007/JHEP01(2012)031
[36] M. Henneaux, G. Lucena Gómez, J. Park and S.-J. Rey, Super- W(infinity) Asymptotic Symmetry of Higher-Spin AdS_3Supergravity, JHEP06 (2012) 037 [arXiv:1203.5152] [INSPIRE].
[37] Pérez, A.; Tempo, D.; Troncoso, R., Higher spin gravity in 3D: Black holes, global charges and thermodynamics, Phys. Lett. B, 726, 444 (2013) · Zbl 1311.83048 · doi:10.1016/j.physletb.2013.08.038
[38] Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S., Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A, 46 (2013) · Zbl 1268.81113 · doi:10.1088/1751-8113/46/21/214017
[39] Pérez, A.; Tempo, D.; Troncoso, R., Higher spin black hole entropy in three dimensions, JHEP, 04, 143 (2013) · Zbl 1342.83201 · doi:10.1007/JHEP04(2013)143
[40] Henneaux, M.; Pérez, A.; Tempo, D.; Troncoso, R., Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP, 12, 048 (2013) · doi:10.1007/JHEP12(2013)048
[41] Bunster, C.; Henneaux, M.; Pérez, A.; Tempo, D.; Troncoso, R., Generalized Black Holes in Three-dimensional Spacetime, JHEP, 05, 031 (2014) · Zbl 1333.83060 · doi:10.1007/JHEP05(2014)031
[42] Zinoviev, YM, Hypergravity in AdS_3, Phys. Lett. B, 739, 106 (2014) · Zbl 1306.83033 · doi:10.1016/j.physletb.2014.10.041
[43] Fuentealba, O.; Matulich, J.; Troncoso, R., Extension of the Poincaré group with half-integer spin generators: hypergravity and beyond, JHEP, 09, 003 (2015) · Zbl 1388.83244 · doi:10.1007/JHEP09(2015)003
[44] Fuentealba, O.; Matulich, J.; Troncoso, R., Asymptotically flat structure of hypergravity in three spacetime dimensions, JHEP, 10, 009 (2015) · Zbl 1388.83524 · doi:10.1007/JHEP10(2015)009
[45] M. Henneaux, A. Pérez, D. Tempo and R. Troncoso, Extended anti-de Sitter Hypergravity in 2 + 1 Dimensions and Hypersymmetry Bounds, in International Workshop on Higher Spin Gauge Theories, Singapore (2015), pg. 139 [arXiv:1512.08603] [INSPIRE]. · Zbl 1359.81170
[46] Grumiller, D.; Pérez, A.; Prohazka, S.; Tempo, D.; Troncoso, R., Higher Spin Black Holes with Soft Hair, JHEP, 10, 119 (2016) · Zbl 1390.83201 · doi:10.1007/JHEP10(2016)119
[47] Grumiller, D.; Merbis, W.; Riegler, M., Most general flat space boundary conditions in three-dimensional Einstein gravity, Class. Quant. Grav., 34 (2017) · Zbl 1373.83077 · doi:10.1088/1361-6382/aa8004
[48] Ravera, L., AdS Carroll Chern-Simons supergravity in 2 + 1 dimensions and its flat limit, Phys. Lett. B, 795, 331 (2019) · Zbl 1421.83137 · doi:10.1016/j.physletb.2019.06.026
[49] Avilés, L.; Gomis, J.; Hidalgo, D., Stringy (Galilei) Newton-Hooke Chern-Simons Gravities, JHEP, 09, 015 (2019) · Zbl 1423.83046 · doi:10.1007/JHEP09(2019)015
[50] Ali, F.; Ravera, L., 𝒩-extended Chern-Simons Carrollian supergravities in 2 + 1 spacetime dimensions, JHEP, 02, 128 (2020) · Zbl 1435.83191 · doi:10.1007/JHEP02(2020)128
[51] Concha, P.; Ipinza, M.; Ravera, L.; Rodríguez, E., Non-relativistic three-dimensional supergravity theories and semigroup expansion method, JHEP, 02, 094 (2021) · Zbl 1460.83111 · doi:10.1007/JHEP02(2021)094
[52] Concha, P.; Ravera, L.; Rodríguez, E., Three-dimensional non-relativistic supergravity and torsion, Eur. Phys. J. C, 82, 220 (2022) · doi:10.1140/epjc/s10052-022-10183-6
[53] R. Caroca, D.M. Peñafiel and P. Salgado-Rebolledo, Non-relativistic spin-3 symmetries in 2 + 1 dimensions from expanded/extended Nappi-Witten algebras, arXiv:2208.00602 [INSPIRE].
[54] Henneaux, M.; Martínez, C.; Troncoso, R.; Zanelli, J., Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.104007
[55] J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys.104 (1986) 207 [INSPIRE]. · Zbl 0584.53039
[56] de Boer, J.; Jottar, JI, Thermodynamics of higher spin black holes in AdS_3, JHEP, 01, 023 (2014) · Zbl 1333.83037 · doi:10.1007/JHEP01(2014)023
[57] G. Barnich, Conserved charges in gravitational theories: Contribution from scalar fields, Ann. U. Craiova Phys.12 (2002) 14 [gr-qc/0211031] [INSPIRE].
[58] G. Clément, Black hole mass and angular momentum in 2 + 1 gravity, Phys. Rev. D68 (2003) 024032 [gr-qc/0301129] [INSPIRE].
[59] Gegenberg, J.; Martínez, C.; Troncoso, R., A Finite action for three-dimensional gravity with a minimally coupled scalar field, Phys. Rev. D, 67 (2003) · doi:10.1103/PhysRevD.67.084007
[60] Park, M-I, Fate of three-dimensional black holes coupled to a scalar field and the Bekenstein-Hawking entropy, Phys. Lett. B, 597, 237 (2004) · Zbl 1123.83304 · doi:10.1016/j.physletb.2004.07.023
[61] Bañados, M.; Theisen, S., Scale invariant hairy black holes, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.064019
[62] Myung, YS, Phase transition for black holes with scalar hair and topological black holes, Phys. Lett. B, 663, 111 (2008) · Zbl 1328.83105 · doi:10.1016/j.physletb.2008.03.046
[63] Correa, F.; Martínez, C.; Troncoso, R., Scalar solitons and the microscopic entropy of hairy black holes in three dimensions, JHEP, 01, 034 (2011) · Zbl 1214.83016 · doi:10.1007/JHEP01(2011)034
[64] Lashkari, N., Holographic Symmetry-Breaking Phases in AdS_3/CFT_2, JHEP, 11, 104 (2011) · Zbl 1306.81120 · doi:10.1007/JHEP11(2011)104
[65] Correa, F.; Martínez, C.; Troncoso, R., Hairy Black Hole Entropy and the Role of Solitons in Three Dimensions, JHEP, 02, 136 (2012) · Zbl 1309.81182 · doi:10.1007/JHEP02(2012)136
[66] Hyun, S.; Jeong, J.; Yi, S-H, Fake Supersymmetry and Extremal Black Holes, JHEP, 03, 042 (2013) · Zbl 1342.83175 · doi:10.1007/JHEP03(2013)042
[67] Aparício, J.; Grumiller, D.; Lopez, E.; Papadimitriou, I.; Stricker, S., Bootstrapping gravity solutions, JHEP, 05, 128 (2013) · Zbl 1342.83124 · doi:10.1007/JHEP05(2013)128
[68] W. Xu, J. Wang and X.-h. Meng, A Note on Entropy Relations of Black Hole Horizons, Int. J. Mod. Phys. A29 (2014) 1450088 [arXiv:1401.5180] [INSPIRE]. · Zbl 1294.83059
[69] Xu, W., Exact black hole formation in three dimensions, Phys. Lett. B, 738, 472 (2014) · doi:10.1016/j.physletb.2014.10.026
[70] Ahn, B.; Hyun, S.; Park, S-A; Yi, S-H, Scaling symmetry and scalar hairy rotating AdS_3black holes, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.024041
[71] Avilés, L.; Maeda, H.; Martínez, C., Exact black-hole formation with a conformally coupled scalar field in three dimensions, Class. Quant. Grav., 35 (2018) · Zbl 1431.83085 · doi:10.1088/1361-6382/aaea9f
[72] Correa, F.; Faúndez, A.; Martínez, C., Rotating hairy black hole and its microscopic entropy in three spacetime dimensions, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.027502
[73] T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys.88 (1974) 286 [INSPIRE]. · Zbl 0328.70016
[74] Matulich, J.; Pérez, A.; Tempo, D.; Troncoso, R., Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics, JHEP, 05, 025 (2015) · Zbl 1388.83596 · doi:10.1007/JHEP05(2015)025
[75] Bañados, M.; Teitelboim, C.; Zanelli, J., The Black hole in three-dimensional space-time, Phys. Rev. Lett., 69, 1849 (1992) · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[76] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D48 (1993) 1506 [Erratum ibid.88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
[77] S. Carlip and C. Teitelboim, Aspects of black hole quantum mechanics and thermodynamics in (2 + 1)-dimensions, Phys. Rev. D51 (1995) 622 [gr-qc/9405070] [INSPIRE].
[78] Maldacena, JM; Strominger, A., AdS_3black holes and a stringy exclusion principle, JHEP, 12, 005 (1998) · Zbl 0951.83019 · doi:10.1088/1126-6708/1998/12/005
[79] Oliva, J.; Tempo, D.; Troncoso, R., Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity, JHEP, 07, 011 (2009) · doi:10.1088/1126-6708/2009/07/011
[80] Ayón-Beato, E.; Garbarz, A.; Giribet, G.; Hassaïne, M., Lifshitz Black Hole in Three Dimensions, Phys. Rev. D, 80 (2009) · Zbl 1272.83039 · doi:10.1103/PhysRevD.80.104029
[81] Pérez, A.; Tempo, D.; Troncoso, R., Gravitational solitons, hairy black holes and phase transitions in BHT massive gravity, JHEP, 07, 093 (2011) · Zbl 1298.83092 · doi:10.1007/JHEP07(2011)093
[82] Gonzalez, HA; Tempo, D.; Troncoso, R., Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes, JHEP, 11, 066 (2011) · Zbl 1306.83044 · doi:10.1007/JHEP11(2011)066
[83] Bergshoeff, EA; Hohm, O.; Townsend, PK, Massive Gravity in Three Dimensions, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.201301
[84] R. Troncoso and M. Tsoukalas, Conformally coupled scalar fields in higher dimensions and a generalization of the Yamabe problem, Preprint CECS-PHY-11/11.
[85] C. Martínez and J. Zanelli, Conformally dressed black hole in (2 + 1)-dimensions, Phys. Rev. D54 (1996) 3830 [gr-qc/9604021] [INSPIRE].
[86] Visser, M., Dirty black holes: Entropy as a surface term, Phys. Rev. D, 48, 5697 (1993) · doi:10.1103/PhysRevD.48.5697
[87] A. Ashtekar, A. Corichi and D. Sudarsky, Nonminimally coupled scalar fields and isolated horizons, Class. Quant. Grav.20 (2003) 3413 [gr-qc/0305044] [INSPIRE]. · Zbl 1055.83026
[88] M. Hortacsu, H.T. Ozcelik and B. Yapiskan, Properties of solutions in (2 + 1)-dimensions, Gen. Rel. Grav.35 (2003) 1209 [gr-qc/0302005] [INSPIRE]. · Zbl 1026.83044
[89] Hotta, K.; Hyakutake, Y.; Kubota, T.; Nishinaka, T.; Tanida, H., The CFT-interpolating Black Hole in Three Dimensions, JHEP, 01, 010 (2009) · Zbl 1243.83045 · doi:10.1088/1126-6708/2009/01/010
[90] Kwon, Y.; Nam, S.; Park, J-D; Yi, S-H, Extremal Black Holes and Holographic C-Theorem, Nucl. Phys. B, 869, 189 (2013) · Zbl 1262.83031 · doi:10.1016/j.nuclphysb.2012.12.016
[91] Xu, W.; Zhao, L., Charged black hole with a scalar hair in (2 + 1) dimensions, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.124008
[92] Zhao, L.; Xu, W.; Zhu, B., Novel rotating hairy black hole in (2 + 1)-dimensions, Commun. Theor. Phys., 61, 475 (2014) · Zbl 1288.83031 · doi:10.1088/0253-6102/61/4/12
[93] Naji, J., Energy Loss of a Heavy Particle near 3D Charged Rotating Hairy Black Hole, Eur. Phys. J. C, 74, 2697 (2014) · doi:10.1140/epjc/s10052-013-2697-y
[94] Mazharimousavi, SH; Halilsoy, M., Einstein-Born-Infeld black holes with a scalar hair in three dimensions, Mod. Phys. Lett. A, 30, 1550177 (2015) · Zbl 1337.83054 · doi:10.1142/S0217732315501771
[95] W. Xu, L. Zhao and D.-C. Zou, Three dimensional rotating hairy black holes, asymptotics and thermodynamics, arXiv:1406.7153 [INSPIRE].
[96] Cárdenas, M.; Fuentealba, O.; Martínez, C., Three-dimensional black holes with conformally coupled scalar and gauge fields, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.124072
[97] Xu, W.; Zou, D-C, (2 + 1) -Dimensional charged black holes with scalar hair in Einstein-Power-Maxwell Theory, Gen. Rel. Grav., 49, 73 (2017) · Zbl 1383.83100 · doi:10.1007/s10714-017-2237-4
[98] González, PA; Saavedra, J.; Vásquez, Y., Three-Dimensional Hairy Black Holes in Teleparallel Gravity, Astrophys. Space Sci., 357, 143 (2015) · doi:10.1007/s10509-015-2374-8
[99] J. Naji and S. Heshmatian, Novel Rotating Hairy Black Hole in (2 + 1)-Dimensions and Shear Viscosity to Entropy Ratio, Int. J. Theor. Phys.53 (2014) 2579 [INSPIRE]. · Zbl 1308.83100
[100] E. Ayón-Beato, M. Bravo-Gaete, F. Correa, M. Hassaïne, M.M. Juárez-Aubry and J. Oliva, First law and anisotropic Cardy formula for three-dimensional Lifshitz black holes, Phys. Rev. D91 (2015) 064006 [Addendum ibid.96 (2017) 049903] [arXiv:1501.01244] [INSPIRE].
[101] Wen, Q., Strategy to Construct Exact Solutions in Einstein-Scalar Gravities, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.104002
[102] E. Ayón-Beato, M. Hassaïne and J.A. Méndez-Zavaleta, (Super-)renormalizably dressed black holes, Phys. Rev. D92 (2015) 024048 [Addendum ibid.96 (2017) 049905] [arXiv:1506.02277] [INSPIRE].
[103] Fan, Z-Y; Chen, B., Exact formation of hairy planar black holes, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.084013
[104] Harms, B.; Stern, A., Spinning σ-model solitons in 2 + 1 anti-de Sitter space, Phys. Lett. B, 763, 401 (2016) · Zbl 1370.83067 · doi:10.1016/j.physletb.2016.10.075
[105] Özçelik, HT; Kaya, R.; Hortaçsu, M., Einstein gravity with torsion induced by the scalar field, Annals Phys., 393, 132 (2018) · Zbl 1390.83291 · doi:10.1016/j.aop.2018.04.012
[106] Harms, B.; Stern, A., Growing Hair on the extremal BTZ black hole, Phys. Lett. B, 769, 465 (2017) · Zbl 1370.83052 · doi:10.1016/j.physletb.2017.04.021
[107] Erices, C.; Martínez, C., Rotating hairy black holes in arbitrary dimensions, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.024034
[108] Tang, Z-Y; Ong, YC; Wang, B.; Papantonopoulos, E., General black hole solutions in (2 + 1)-dimensions with a scalar field nonminimally coupled to gravity, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.024003
[109] Karakasis, T.; Papantonopoulos, E.; Tang, Z-Y; Wang, B., Black holes of (2 + 1)-dimensional f (R) gravity coupled to a scalar field, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.064063
[110] Bueno, P.; Cano, PA; Moreno, J.; van der Velde, G., Regular black holes in three dimensions, Phys. Rev. D, 104, L021501 (2021) · doi:10.1103/PhysRevD.104.L021501
[111] Karakasis, T.; Papantonopoulos, E.; Tang, Z-Y; Wang, B., (2 + 1)-dimensional black holes in f (R, ϕ) gravity, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.044038
[112] P.J. Arias, P. Bargueño, E. Contreras and E. Fuenmayor, 2 + 1 Einstein-Klein-Gordon black holes by gravitational decoupling, Astronomy1 (2022) 2 [arXiv:2203.00661] [INSPIRE].
[113] C. Desa, W. Ccuiro and D. Choque, Exact hairy black holes asymptotically AdS_2+1, arXiv:2210.06421 [INSPIRE].
[114] T. Karakasis, E. Papantonopoulos, Z.-Y. Tang and B. Wang, Rotating (2 + 1)-dimensional Black Holes in Einstein-Maxwell-Dilaton Theory, arXiv:2210.15704 [INSPIRE].
[115] P. Bueno, P.A. Cano, J. Moreno and G. van der Velde, Electromagnetic Generalized Quasi-topological gravities in (2 + 1) dimensions, arXiv:2212.00637 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.