×

Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity. (English) Zbl 1342.83033

Summary: Starting from the Chern-Simons formulation, the two-dimensional dual theory for three-dimensional asymptotically flat Einstein gravity at null infinity is constructed. Solving the constraints together with suitable gauge fixing conditions gives in a first stage a chiral Wess-Zumino-Witten like model based on the Poincaré algebra in three dimensions. The next stage involves a Hamiltonian reduction to a BMS3 invariant Liouville theory. These results are connected to those originally derived in the anti-de Sitter case by rephrasing the latter in a suitable gauge before taking their flat-space limit.

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory

References:

[1] G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE]. · Zbl 0663.47007
[2] L. Susskind, The world as a hologram, J. Math. Phys.36 (1995) 6377 [hep-th/9409089] [INSPIRE]. · Zbl 0850.00013 · doi:10.1063/1.531249
[3] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[4] A. Achucarro and P. Townsend, A Chern-Simons Action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett.B 180 (1986) 89 [INSPIRE].
[5] E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys.B 311 (1988) 46 [INSPIRE]. · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[6] E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys.121 (1989) 351 [INSPIRE]. · Zbl 0667.57005 · doi:10.1007/BF01217730
[7] G.W. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett.B 220 (1989) 422 [INSPIRE].
[8] S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys.B 326 (1989) 108 [INSPIRE]. · doi:10.1016/0550-3213(89)90436-7
[9] E. Witten, Nonabelian bosonization in two-dimensions, Commun. Math. Phys.92 (1984) 455 [INSPIRE]. · Zbl 0536.58012 · doi:10.1007/BF01215276
[10] O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav.12 (1995) 2961 [gr-qc/9506019] [INSPIRE]. · Zbl 0836.53052 · doi:10.1088/0264-9381/12/12/012
[11] M. Bañados, Global charges in Chern-Simons field theory and the (2+1) black hole, Phys. Rev.D 52 (1996) 5816 [hep-th/9405171] [INSPIRE].
[12] S. Carlip, The statistical mechanics of the (2+1)-dimensional black hole, Phys. Rev.D 51 (1995) 632 [gr-qc/9409052] [INSPIRE].
[13] S. Carlip, Quantum gravity in 2+1 dimensions, Cambridge University Press, (1998). · Zbl 0919.53024
[14] M. Bañados, T. Brotz and M.E. Ortiz, Boundary dynamics and the statistical mechanics of the (2+1)-dimensional black hole, Nucl. Phys.B 545 (1999) 340 [hep-th/9802076] [INSPIRE]. · Zbl 0953.83018 · doi:10.1016/S0550-3213(99)00069-3
[15] S. Carlip, What we don’t know about BTZ black hole entropy, Class. Quant. Grav.15 (1998) 3609 [hep-th/9806026] [INSPIRE]. · Zbl 0946.83030 · doi:10.1088/0264-9381/15/11/020
[16] M. Bañados, Three-dimensional quantum geometry and black holes, in Trends in Theoretical Physics II, H. Falomir, R.E. Gamboa Saravi and F.A. Schaposnik eds., volume 484 of American Institute of Physics Conference Series, pg. 147 [hep-th/9901148] [INSPIRE]. · Zbl 1162.83342
[17] R. Floreanini and R. Jackiw, Selfdual Fields as Charge Density Solitons, Phys. Rev. Lett.59 (1987) 1873 [INSPIRE]. · doi:10.1103/PhysRevLett.59.1873
[18] M. Bernstein and J. Sonnenschein, A comment on the quantization of chiral bosons, Phys. Rev. Lett.60 (1988) 1772 [INSPIRE]. · doi:10.1103/PhysRevLett.60.1772
[19] J. Sonnenschein, Chiral bosons, Nucl. Phys.B 309 (1988) 752 [INSPIRE]. · doi:10.1016/0550-3213(88)90339-2
[20] P. Salomonson, B. Skagerstam and A. Stern, Canonical quantization of chiral bosons, Phys. Rev. Lett.62 (1989) 1817 [INSPIRE]. · doi:10.1103/PhysRevLett.62.1817
[21] M. Stone, How to make a bosonized Dirac fermion from two bosonized Weyl fermions, ILL-TH-89-23 NSF-ITP-89-97 (1989).
[22] M.-f. Chu, P. Goddard, I. Halliday, D.I. Olive and A. Schwimmer, Quantization of the Wess-Zumino-Witten model on a circle, Phys. Lett.B 266 (1991) 71 [INSPIRE]. · Zbl 1176.81110
[23] L. Caneschi and M. Lysiansky, Chiral quantization of the WZW SU(N) model, Nucl. Phys.B 505 (1997) 701 [hep-th/9605099] [INSPIRE]. · Zbl 0925.81329 · doi:10.1016/S0550-3213(97)00587-7
[24] P. Forgacs, A. Wipf, J. Balog, L. Feher and L. O’Raifeartaigh, Liouville and Toda Theories as Conformally Reduced WZNW Theories, Phys. Lett.B 227 (1989) 214 [INSPIRE].
[25] A. Alekseev and S.L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the Virasoro Group and 2D Gravity, Nucl. Phys.B 323 (1989) 719 [INSPIRE]. · doi:10.1016/0550-3213(89)90130-2
[26] M. Bershadsky and H. Ooguri, Hidden SL(n) Symmetry in Conformal Field Theories, Commun. Math. Phys.126 (1989) 49 [INSPIRE]. · Zbl 0689.17015 · doi:10.1007/BF02124331
[27] L. Cornalba and M.S. Costa, Time dependent orbifolds and string cosmology, Fortsch. Phys.52 (2004) 145 [hep-th/0310099] [INSPIRE]. · Zbl 1040.81075 · doi:10.1002/prop.200310123
[28] G. Barnich, A. Gomberoff and H.A. Gonzalez, The flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev.D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].
[29] P. Salomonson, B. Skagerstam and A. Stern, ISO(2,1) chiral models and quantum gravity in (2+1)-dimensions, Nucl. Phys.B 347 (1990) 769 [INSPIRE]. · doi:10.1016/0550-3213(90)90382-N
[30] G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav.24 (2007) F15 Erratum ibid.24 (2007) 3139 [gr-qc/0610130] [INSPIRE]. · Zbl 1111.83045
[31] G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP05 (2010) 062 [arXiv:1001.1541] [INSPIRE]. · Zbl 1287.83043 · doi:10.1007/JHEP05(2010)062
[32] A. Bagchi and R. Fareghbal, BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries, JHEP10 (2012) 092 [arXiv:1203.5795] [INSPIRE]. · doi:10.1007/JHEP10(2012)092
[33] A. Strominger, Black hole entropy from near horizon microstates, JHEP02 (1998) 009 [hep-th/9712251] [INSPIRE]. · Zbl 0955.83010 · doi:10.1088/1126-6708/1998/02/009
[34] G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP10 (2012) 095 [arXiv:1208.4371] [INSPIRE]. · Zbl 1397.83210 · doi:10.1007/JHEP10(2012)095
[35] A. Bagchi, S. Detournay, R. Fareghbal and J. Simon, Holography of 3d Flat Cosmological Horizons, arXiv:1208.4372 [INSPIRE].
[36] C.R. Nappi and E. Witten, A WZW model based on a nonsemisimple group, Phys. Rev. Lett.71 (1993) 3751 [hep-th/9310112] [INSPIRE]. · Zbl 0972.81635 · doi:10.1103/PhysRevLett.71.3751
[37] G. Barnich, A. Gomberoff and H.A. Gonzalez, BMS3invariant two dimensional field theories as flat limit of Liouville, arXiv:1210.0731 [INSPIRE].
[38] M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys.282 (2000) 31 [hep-th/9910013] [INSPIRE]. · Zbl 0976.83064 · doi:10.1006/aphy.2000.5994
[39] M. Rooman and P. Spindel, Holonomies, anomalies and the Fefferman-Graham ambiguity in AdS3gravity, Nucl. Phys.B 594 (2001) 329 [hep-th/0008147] [INSPIRE]. · Zbl 0971.83505 · doi:10.1016/S0550-3213(00)00636-2
[40] S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys.140 (1982) 372 [Erratum ibid.185 (1988) 406] [INSPIRE].
[41] S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett.48 (1982) 975 [INSPIRE]. · doi:10.1103/PhysRevLett.48.975
[42] J.M. Figueroa-O’Farrill and S. Stanciu, Nonsemisimple Sugawara constructions, Phys. Lett.B 327 (1994) 40 [hep-th/9402035] [INSPIRE].
[43] J.M. Figueroa-O’Farrill and S. Stanciu, Nonreductive WZW models and their CFTs, Nucl. Phys.B 458 (1996) 137 [hep-th/9506151] [INSPIRE]. · Zbl 1003.81547 · doi:10.1016/0550-3213(95)00556-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.