×

Asymptotically flat structure of hypergravity in three spacetime dimensions. (English) Zbl 1388.83524

Summary: The asymptotic structure of three-dimensional hypergravity without cosmological constant is analyzed. In the case of gravity minimally coupled to a spin-5/2 field, a consistent set of boundary conditions is proposed, being wide enough so as to accommodate a generic choice of chemical potentials associated to the global charges. The algebra of the canonical generators of the asymptotic symmetries is given by a hypersymmetric nonlinear extension of \(BMS_{3}\). It is shown that the asymptotic symmetry algebra can be recovered from a subset of a suitable limit of the direct sum of the \(W_{(2,4)}\) algebra with its hypersymmetric extension. The presence of hypersymmetry generators allows to construct bounds for the energy, which turn out to be nonlinear and saturate for spacetimes that admit globally-defined “Killing vector-spinors”. The null orbifold or Minkowski spacetime can then be seen as the corresponding ground state in the case of fermions that fulfill periodic or antiperiodic boundary conditions, respectively. The hypergravity theory is also explicitly extended so as to admit parity-odd terms in the action. It is then shown that the asymptotic symmetry algebra includes an additional central charge, being proportional to the coupling of the Lorentz-Chern-Simons form. The generalization of these results in the case of gravity minimally coupled to arbitrary half-integer spin fields is also carried out. The hypersymmetry bounds are found to be given by a suitable polynomial of degree \( s+\frac{1}{2} \) in the energy, where \(s\) is the spin of the fermionic generators.

MSC:

83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism

References:

[1] S. Weinberg, Photons and Gravitons in s Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev.135 (1964) B1049 [INSPIRE]. · Zbl 0144.23702 · doi:10.1103/PhysRev.135.B1049
[2] C. Aragone and S. Deser, Consistency Problems of Hypergravity, Phys. Lett.B 86 (1979) 161 [INSPIRE]. · doi:10.1016/0370-2693(79)90808-6
[3] F.A. Berends, J.W. van Holten, P. van Nieuwenhuizen and B. de Wit, On Spin 5/2 Gauge Fields, Phys. Lett.B 83 (1979) 188 [Erratum ibid.84B (1979) 529] [INSPIRE].
[4] S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett.B 96 (1980) 59 [INSPIRE]. · doi:10.1016/0370-2693(80)90212-9
[5] C. Aragone and S. Deser, Hypersymmetry in D = 3 of Coupled Gravity Massless Spin 5/2 System, Class. Quant. Grav.1 (1984) L9 [INSPIRE]. · doi:10.1088/0264-9381/1/2/001
[6] O. Fuentealba, J. Matulich and R. Troncoso, Extension of the Poincaré group with half-integer spin generators: hypergravity and beyond, JHEP09 (2015) 003 [arXiv:1505.06173] [INSPIRE]. · Zbl 1388.83244 · doi:10.1007/JHEP09(2015)003
[7] B. Chen, J. Long and Y.-N. Wang, Conical Defects, Black Holes and Higher Spin (Super-)Symmetry, JHEP06 (2013) 025 [arXiv:1303.0109] [INSPIRE]. · Zbl 1342.83140 · doi:10.1007/JHEP06(2013)025
[8] Yu. M. Zinoviev, Hypergravity in AdS3, Phys. Lett.B 739 (2014) 106 [arXiv:1408.2912] [INSPIRE]. · Zbl 1306.83033
[9] M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Hypersymmetry bounds and three-dimensional higher-spin black holes, JHEP08 (2015) 021 [arXiv:1506.01847] [INSPIRE]. · Zbl 1388.83459 · doi:10.1007/JHEP08(2015)021
[10] S. Deser, R. Jackiw and G. ’t Hooft, Three-Dimensional Einstein Gravity: Dynamics of Flat Space, Annals Phys.152 (1984) 220 [INSPIRE].
[11] S. Deser and R. Jackiw, Three-Dimensional Cosmological Gravity: Dynamics of Constant Curvature, Annals Phys.153 (1984) 405 [INSPIRE]. · doi:10.1016/0003-4916(84)90025-3
[12] K. Ezawa, Transition amplitude in (2 + 1)-dimensional Chern-Simons gravity on a torus, Int. J. Mod. Phys.A 9 (1994) 4727 [hep-th/9305170] [INSPIRE]. · Zbl 0985.81613 · doi:10.1142/S0217751X94001898
[13] L. Cornalba and M.S. Costa, A New cosmological scenario in string theory, Phys. Rev.D 66 (2002) 066001 [hep-th/0203031] [INSPIRE].
[14] L. Cornalba and M.S. Costa, Time dependent orbifolds and string cosmology, Fortsch. Phys.52 (2004) 145 [hep-th/0310099] [INSPIRE]. · Zbl 1040.81075 · doi:10.1002/prop.200310123
[15] G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP10 (2012) 095 [arXiv:1208.4371] [INSPIRE]. · Zbl 1397.83210 · doi:10.1007/JHEP10(2012)095
[16] A. Bagchi, S. Detournay, R. Fareghbal and J. Simón, Holography of 3D Flat Cosmological Horizons, Phys. Rev. Lett.110 (2013) 141302 [arXiv:1208.4372] [INSPIRE]. · doi:10.1103/PhysRevLett.110.141302
[17] M. Gary, D. Grumiller, M. Riegler and J. Rosseel, Flat space (higher spin) gravity with chemical potentials, JHEP01 (2015) 152 [arXiv:1411.3728] [INSPIRE]. · doi:10.1007/JHEP01(2015)152
[18] J. Matulich, A. Perez, D. Tempo and R. Troncoso, Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics, JHEP05 (2015) 025 [arXiv:1412.1464] [INSPIRE]. · Zbl 1388.83596 · doi:10.1007/JHEP05(2015)025
[19] M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP12 (2013) 048 [arXiv:1309.4362] [INSPIRE]. · doi:10.1007/JHEP12(2013)048
[20] C. Bunster, M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Generalized Black Holes in Three-dimensional Spacetime, JHEP05 (2014) 031 [arXiv:1404.3305] [INSPIRE]. · Zbl 1333.83060 · doi:10.1007/JHEP05(2014)031
[21] G. Barnich, L. Donnay, J. Matulich and R. Troncoso, Asymptotic symmetries and dynamics of three-dimensional flat supergravity, JHEP08 (2014) 071 [arXiv:1407.4275] [INSPIRE]. · doi:10.1007/JHEP08(2014)071
[22] O. Coussaert and M. Henneaux, Supersymmetry of the (2 + 1) black holes, Phys. Rev. Lett.72 (1994) 183 [hep-th/9310194] [INSPIRE]. · Zbl 0973.83530 · doi:10.1103/PhysRevLett.72.183
[23] A. Ashtekar, J. Bicak and B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev.D 55 (1997) 669 [gr-qc/9608042] [INSPIRE].
[24] G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav.24 (2007) F15 [gr-qc/0610130] [INSPIRE]. · Zbl 1111.83045 · doi:10.1088/0264-9381/24/5/F01
[25] G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP05 (2010) 062 [arXiv:1001.1541] [INSPIRE]. · Zbl 1287.83043 · doi:10.1007/JHEP05(2010)062
[26] H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 Gravity in Three-Dimensional Flat Space, Phys. Rev. Lett.111 (2013) 121603 [arXiv:1307.4768] [INSPIRE]. · doi:10.1103/PhysRevLett.111.121603
[27] H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP09 (2013) 016 [arXiv:1307.5651] [INSPIRE]. · Zbl 1342.83242 · doi:10.1007/JHEP09(2013)016
[28] O. Coussaert, M. Henneaux and P. van Driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav.12 (1995) 2961 [gr-qc/9506019] [INSPIRE]. · Zbl 0836.53052 · doi:10.1088/0264-9381/12/12/012
[29] G.T. Horowitz and A.R. Steif, Singular string solutions with nonsingular initial data, Phys. Lett.B 258 (1991) 91 [INSPIRE]. · doi:10.1016/0370-2693(91)91214-G
[30] T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys.88 (1974) 286 [INSPIRE]. · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[31] J.M. Figueroa-O’Farrill, S. Schrans and K. Thielemans, On the Casimir algebra of B(2), Phys. Lett.B 263 (1991) 378 [INSPIRE]. · doi:10.1016/0370-2693(91)90476-7
[32] S. Bellucci, S. Krivonos and A.S. Sorin, Linearizing W(2,4) and WB(2) algebras, Phys. Lett.B 347 (1995) 260 [hep-th/9411168] [INSPIRE]. · doi:10.1016/0370-2693(95)00002-3
[33] A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett.B 180 (1986) 89 [INSPIRE]. · doi:10.1016/0370-2693(86)90140-1
[34] S. Deser and C. Teitelboim, Supergravity Has Positive Energy, Phys. Rev. Lett.39 (1977) 249 [INSPIRE]. · doi:10.1103/PhysRevLett.39.249
[35] C. Teitelboim, Surface Integrals as Symmetry Generators in Supergravity Theory, Phys. Lett.B 69 (1977) 240 [INSPIRE]. · doi:10.1016/0370-2693(77)90653-0
[36] E. Witten, A Simple Proof of the Positive Energy Theorem, Commun. Math. Phys.80 (1981) 381 [INSPIRE]. · Zbl 1051.83532 · doi:10.1007/BF01208277
[37] L.F. Abbott and S. Deser, Stability of Gravity with a Cosmological Constant, Nucl. Phys.B 195 (1982) 76 [INSPIRE]. · Zbl 0900.53033 · doi:10.1016/0550-3213(82)90049-9
[38] C.M. Hull, The Positivity of Gravitational Energy and Global Supersymmetry, Commun. Math. Phys.90 (1983) 545 [INSPIRE]. · doi:10.1007/BF01216185
[39] C. Teitelboim, Manifestly Positive Energy Expression In Classical Gravity: Simplified Derivation From Supergravity, Phys. Rev.D 29 (1984) 2763 [INSPIRE].
[40] A. Giacomini, R. Troncoso and S. Willison, Three-dimensional supergravity reloaded, Class. Quant. Grav.24 (2007) 2845 [hep-th/0610077] [INSPIRE]. · Zbl 1117.83112 · doi:10.1088/0264-9381/24/11/005
[41] S. Deser and J.H. Kay, Topologically massive supergravity, Phys. Lett.B 120 (1983) 97 [INSPIRE]. · doi:10.1016/0370-2693(83)90631-7
[42] S. Deser, Cosmological Topological Supergravity, in Quantum Theory Of Gravity, S.M. Christensen eds., CRC Press, Boca Raton U.S.A. (1984), pg. 374.
[43] N. Marcus and J.H. Schwarz, Three-Dimensional Supergravity Theories, Nucl. Phys.B 228 (1983) 145 [INSPIRE]. · doi:10.1016/0550-3213(83)90402-9
[44] M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys.282 (2000) 31 [hep-th/9910013] [INSPIRE]. · Zbl 0976.83064 · doi:10.1006/aphy.2000.5994
[45] M. Henneaux and S.-J. Rey, Nonlinear W∞as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP12 (2010) 007 [arXiv:1008.4579] [INSPIRE]. · Zbl 1294.81137 · doi:10.1007/JHEP12(2010)007
[46] A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP11 (2010) 007 [arXiv:1008.4744] [INSPIRE]. · Zbl 1294.81240 · doi:10.1007/JHEP11(2010)007
[47] M. Henneaux, G. Lucena Gómez, J. Park and S.-J. Rey, Super-W∞Asymptotic Symmetry of Higher-Spin AdS3Supergravity, JHEP06 (2012) 037 [arXiv:1203.5152] [INSPIRE]. · Zbl 1397.83195 · doi:10.1007/JHEP06(2012)037
[48] M. Gutperle, E. Hijano and J. Samani, Lifshitz black holes in higher spin gravity, JHEP04 (2014) 020 [arXiv:1310.0837] [INSPIRE]. · Zbl 1333.83087 · doi:10.1007/JHEP04(2014)020
[49] M. Gutperle and Y. Li, Higher Spin Lifshitz Theory and Integrable Systems, Phys. Rev.D 91 (2015) 046012 [arXiv:1412.7085] [INSPIRE].
[50] A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical Defects in Higher Spin Theories, JHEP02 (2012) 096 [arXiv:1111.3381] [INSPIRE]. · Zbl 1309.83080
[51] S. Datta and J.R. David, Supersymmetry of classical solutions in Chern-Simons higher spin supergravity, JHEP01 (2013) 146 [arXiv:1208.3921] [INSPIRE]. · Zbl 1342.81572 · doi:10.1007/JHEP01(2013)146
[52] A. Campoleoni, T. Prochazka and J. Raeymaekers, A note on conical solutions in 3D Vasiliev theory, JHEP05 (2013) 052 [arXiv:1303.0880] [INSPIRE]. · Zbl 1342.81483 · doi:10.1007/JHEP05(2013)052
[53] A. Campoleoni and S. Fredenhagen, On the higher-spin charges of conical defects, Phys. Lett.B 726 (2013) 387 [arXiv:1307.3745] [INSPIRE]. · Zbl 1311.81175 · doi:10.1016/j.physletb.2013.08.012
[54] W. Li, F.-L. Lin and C.-W. Wang, Modular Properties of 3D Higher Spin Theory, JHEP12 (2013) 094 [arXiv:1308.2959] [INSPIRE]. · doi:10.1007/JHEP12(2013)094
[55] J. Raeymaekers, Quantization of conical spaces in 3D gravity, JHEP03 (2015) 060 [arXiv:1412.0278] [INSPIRE]. · Zbl 1388.83139 · doi:10.1007/JHEP03(2015)060
[56] A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP07 (2009) 037 [arXiv:0902.1385] [INSPIRE]. · doi:10.1088/1126-6708/2009/07/037
[57] A. Bagchi, Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories, Phys. Rev. Lett.105 (2010) 171601 [INSPIRE]. · doi:10.1103/PhysRevLett.105.171601
[58] A. Bagchi, S. Detournay, D. Grumiller and J. Simon, Cosmic Evolution from Phase Transition of Three-Dimensional Flat Space, Phys. Rev. Lett.111 (2013) 181301 [arXiv:1305.2919] [INSPIRE]. · doi:10.1103/PhysRevLett.111.181301
[59] A. Bagchi, R. Basu, D. Grumiller and M. Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett.114 (2015) 111602 [arXiv:1410.4089] [INSPIRE]. · doi:10.1103/PhysRevLett.114.111602
[60] C. Aragone and S. Deser, Higher Spin Vierbein Gauge Fermions and Hypergravities, Nucl. Phys.B 170 (1980) 329 [INSPIRE]. · doi:10.1016/0550-3213(80)90153-4
[61] M. Porrati, Universal Limits on Massless High-Spin Particles, Phys. Rev.D 78 (2008) 065016 [arXiv:0804.4672] [INSPIRE].
[62] X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys.84 (2012) 987 [arXiv:1007.0435] [INSPIRE]. · doi:10.1103/RevModPhys.84.987
[63] C. Bunster, M. Henneaux, S. Hörtner and A. Leonard, Supersymmetric electric-magnetic duality of hypergravity, Phys. Rev.D 90 (2014) 045029 [arXiv:1406.3952] [INSPIRE].
[64] M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett.B 243 (1990) 378 [INSPIRE]. · Zbl 1332.81084 · doi:10.1016/0370-2693(90)91400-6
[65] V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE]. · Zbl 1342.81176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.