Skip to main content
Log in

Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Field theories with anisotropic scaling in 1 + 1 dimensions are considered. It is shown that the isomorphism between Lifshitz algebras with dynamical exponents z and z −1 naturally leads to a duality between low and high temperature regimes. Assuming the existence of gap in the spectrum, this duality allows to obtain a precise formula for the asymptotic growth of the number of states with a fixed energy which depends on z and the energy of the ground state, and reduces to the Cardy formula for z = 1.

The holographic realization of the duality can be naturally inferred from the fact that Euclidean Lifshitz spaces in three dimensions with dynamical exponents and characteristic lengths given by z, l, and z −1, z −1 l, respectively, are diffeomorphic. The semiclassical entropy of black holes with Lifshitz asymptotics can then be recovered from the generalization of Cardy formula, where the ground state corresponds to a soliton. An explicit example is provided by the existence of a purely gravitational soliton solution for BHT massive gravity, which precisely has the required energy that reproduces the entropy of the analytic asymptotically Lifshitz black hole with z = 3.

Remarkably, neither the asymptotic symmetries nor central charges were explicitly used in order to obtain these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976) 1165 [INSPIRE].

    ADS  Google Scholar 

  2. S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge U.K. (1999).

    Google Scholar 

  3. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  4. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Maldacena, The gauge/gravity duality, [arXiv:1106.6073] [INSPIRE].

  6. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. P. Koroteev and M. Libanov, On Existence of Self-Tuning Solutions in Static Braneworlds without Singularities, JHEP 02 (2008) 104 [arXiv:0712.1136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  9. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  10. E. Brynjolfsson, U. Danielsson, L. Thorlacius and T. Zingg, Holographic Superconductors with Lifshitz Scaling, J. Phys. A 43 (2010) 065401 [arXiv:0908.2611] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. K. Balasubramanian and J. McGreevy, An Analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz Black Hole in Three Dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz Black Hole in Four Dimensional R 2 Gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. D.-W. Pang, On Charged Lifshitz Black Holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [INSPIRE].

    Article  ADS  Google Scholar 

  15. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Analytic Lifshitz black holes in higher dimensions, JHEP 04 (2010) 030 [arXiv:1001.2361] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Dehghani, R. Mann and R. Pourhasan, Charged Lifshitz Black Holes, Phys. Rev. D 84 (2011) 046002 [arXiv:1102.0578] [INSPIRE].

    ADS  Google Scholar 

  17. W. Chemissany and J. Hartong, From D3-branes to Lifshitz Space-Times, Class. Quant. Grav. 28 (2011) 195011 [arXiv:1105.0612] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Maeda and G. Giribet, Lifshitz black holes in Brans-Dicke theory, arXiv:1105.1331 [INSPIRE].

  19. J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].

    Article  ADS  Google Scholar 

  20. U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. R.B. Mann, Lifshitz Topological Black Holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in asymptotically Lifshitz spacetimes, Phys. Rev. D 80 (2009) 126004 [arXiv:0907.4755] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. M. Dehghani and R.B. Mann, Lovelock-Lifshitz Black Holes, JHEP 07 (2010) 019 [arXiv:1004.4397] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. W. Brenna, M. Dehghani and R. Mann, Quasi-Topological Lifshitz Black Holes, Phys. Rev. D 84 (2011) 024012 [arXiv:1101.3476] [INSPIRE].

    ADS  Google Scholar 

  26. I. Amado and A.F. Faedo, Lifshitz black holes in string theory, JHEP 07 (2011) 004 [arXiv:1105.4862] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A.V. Chubukov, S. Sachdev and T. Senthil, Quantum phase transitions in frustrated quantum antiferromagnets, Nucl. Phys. B 426 (1994) 601.

    Article  ADS  Google Scholar 

  28. K. Yang, Ferromagnetic Transition in One-Dimensional Itinerant Electron Systems, Phys. Rev. Lett. 93 (2004) 066401.

    Article  ADS  Google Scholar 

  29. J.L. Cardy, Critical exponents of the chiral Potts model from conformal field theory, Nucl. Phys. B 389 (1993) 577 [hep-th/9210002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D.M. Hofman and A. Strominger, Chiral Scale and Conformal Invariance in 2D Quantum Field Theory, Phys. Rev. Lett. 107 (2011) 161601 [arXiv:1107.2917] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N Effects in Non-Relativistic Gauge-Gravity Duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE]

    Article  MathSciNet  ADS  Google Scholar 

  33. F. Correa, C. Martinez and R. Troncoso, Scalar solitons and the microscopic entropy of hairy black holes in three dimensions, JHEP 01 (2011) 034 [arXiv:1010.1259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field, Phys. Rev. D 65 (2002) 104007 [hep-th/0201170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. A. Perez, D. Tempo and R. Troncoso, Gravitational solitons, hairy black holes and phase transitions in BHT massive gravity, JHEP 07 (2011) 093 [arXiv:1106.4849] [INSPIRE].

    Article  ADS  Google Scholar 

  36. G. Giribet, J. Oliva, D. Tempo and R. Troncoso, Microscopic entropy of the three-dimensional rotating black hole of BHT massive gravity, Phys. Rev. D 80 (2009) 124046 [arXiv:0909.2564] [INSPIRE].

    ADS  Google Scholar 

  37. J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity, JHEP 07 (2009) 011 [arXiv:0905.1545] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  42. S. Carlip and C. Teitelboim, Aspects of black hole quantum mechanics and thermodynamics in (2 + 1)-dimensions, Phys. Rev. D 51 (1995) 622 [gr-qc/9405070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. J. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. D.O. Devecioglu and O. Sarioglu, On the thermodynamics of Lifshitz black holes, Phys. Rev. D 83 (2011) 124041 [arXiv:1103.1993] [INSPIRE].

    ADS  Google Scholar 

  50. D.O. Devecioglu and O. Sarioglu, Conserved Killing charges of quadratic curvature gravity theories in arbitrary backgrounds, Phys. Rev. D 83 (2011) 021503 [arXiv:1010.1711] [INSPIRE].

    ADS  Google Scholar 

  51. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. E. D’Hoker and P. Kraus, Holographic Metamagnetism, Quantum Criticality and Crossover Behavior, JHEP 05 (2010) 083 [arXiv:1003.1302] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  53. P. Hořava and C.M. Melby-Thompson, Anisotropic Conformal Infinity, Gen. Rel. Grav. 43 (2011) 1391 [arXiv:0909.3841] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. G.T. Horowitz and S.F. Ross, Naked black holes, Phys. Rev. D 56 (1997) 2180 [hep-th/9704058] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. K. Copsey and R. Mann, Pathologies in Asymptotically Lifshitz Spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].

    ADS  Google Scholar 

  57. C. Hoyos and P. Koroteev, On the Null Energy Condition and Causality in Lifshitz Holography, Phys. Rev. D 82 (2010) 084002 [arXiv:1007.1428] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán A. González.

Additional information

ArXiv ePrint: 1107.3647

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, H.A., Tempo, D. & Troncoso, R. Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes. J. High Energ. Phys. 2011, 66 (2011). https://doi.org/10.1007/JHEP11(2011)066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)066

Keywords

Navigation