×

Boundary conditions for General Relativity in three-dimensional spacetimes, integrable systems and the KdV/mKdV hierarchies. (English) Zbl 1421.83074

Summary: We present a new set of boundary conditions for General Relativity on \(\mathrm{AdS}_{3}\), where the dynamics of the boundary degrees of freedom are described by two independent left and right members of the Gardner hierarchy of integrable equations, also known as the “mixed KdV-mKdV” hierarchy. This integrable system has the very special property that simultaneously combines both, the Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) hierarchies in a single integrable structure. This relationship between gravitation in three-dimensional spacetimes and two-dimensional integrable systems is based on an extension of the recently introduced “soft hairy boundary conditions” on \(\mathrm{AdS}_{3}\), where the chemical potentials are now allowed to depend locally on the dynamical fields and their spatial derivatives. The complete integrable structure of the Gardner system, i.e., the phase space, the Poisson brackets and the infinite number of commuting conserved charges, are directly obtained from the asymptotic analysis and the conserved surface integrals in the gravitational theory. These boundary conditions have the particular property that they can also be interpreted as being defined in the near horizon region of spacetimes with event horizons. Black hole solutions are then naturally accommodated within our boundary conditions, and are described by static configurations associated to the corresponding member of the Gardner hierarchy. The thermodynamic properties of the black holes in the ensembles defined by our boundary conditions are also discussed. Finally, we show that our results can be naturally extended to the case of a vanishing cosmological constant, and the integrable system turns out to be precisely the same as in the case of \(\mathrm{AdS}_{3}\).

MSC:

83C80 Analogues of general relativity in lower dimensions
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81R12 Groups and algebras in quantum theory and relations with integrable systems
83C57 Black holes
35Q53 KdV equations (Korteweg-de Vries equations)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Pérez, A.; Tempo, D.; Troncoso, R., Boundary conditions for general relativity on AdS_3and the KdV hierarchy, JHEP, 06, 103 (2016) · Zbl 1388.83028 · doi:10.1007/JHEP06(2016)103
[2] Brown, JD; Henneaux, M., Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys., 104, 207 (1986) · Zbl 0584.53039 · doi:10.1007/BF01211590
[3] Hirota, R.; Satsuma, J., Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett., A 85, 407 (1981) · doi:10.1016/0375-9601(81)90423-0
[4] O. Fuentealba et al., Integrable systems with BMS_3Poisson structure and the dynamics of locally flat spacetimes, JHEP01 (2018) 148 [arXiv:1711.02646] [INSPIRE].
[5] Henneaux, M.; Pérez, A.; Tempo, D.; Troncoso, R., Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP, 12, 048 (2013) · doi:10.1007/JHEP12(2013)048
[6] Bunster, C.; Henneaux, M.; Pérez, A.; Tempo, D.; Troncoso, R., Generalized black holes in three-dimensional spacetime, JHEP, 05, 031 (2014) · Zbl 1333.83060 · doi:10.1007/JHEP05(2014)031
[7] Sasaki, R.; Yamanaka, I., Virasoro algebra, vertex operators, quantum sine-Gordon and solvable quantum field theories, Adv. Stud. Pure Math., 16, 271 (1988) · Zbl 0661.35076 · doi:10.2969/aspm/01610271
[8] Eguchi, T.; Yang, S-K, Deformations of conformal field theories and soliton equations, Phys. Lett., B 224, 373 (1989) · doi:10.1016/0370-2693(89)91463-9
[9] Bazhanov, VV; Lukyanov, SL; Zamolodchikov, AB, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys., 177, 381 (1996) · Zbl 0851.35113 · doi:10.1007/BF02101898
[10] J. de Boer and D. Engelhardt, Remarks on thermalization in 2D CFT, Phys. Rev.D 94 (2016) 126019 [arXiv:1604.05327] [INSPIRE].
[11] Dymarsky, A.; Pavlenko, K., Generalized Gibbs ensemble of 2d CFTs at large central charge in the thermodynamic limit, JHEP, 01, 098 (2019) · Zbl 1409.81117
[12] Maloney, A.; Ng, GS; Ross, SF; Tsiares, I., Thermal correlation functions of KdV charges in 2D CFT, JHEP, 02, 044 (2019) · Zbl 1411.81185 · doi:10.1007/JHEP02(2019)044
[13] Maloney, A.; Ng, GS; Ross, SF; Tsiares, I., Generalized Gibbs ensemble and the statistics of KdV charges in 2D CFT, JHEP, 03, 075 (2019) · Zbl 1414.81212 · doi:10.1007/JHEP03(2019)075
[14] Dymarsky, A.; Pavlenko, K., Exact generalized partition function of 2D CFTs at large central charge, JHEP, 05, 077 (2019) · Zbl 1416.81147 · doi:10.1007/JHEP05(2019)077
[15] E.M. Brehm and D. Das, On KdV characters in large c CFTs, arXiv:1901.10354 [INSPIRE].
[16] A. Dymarsky and K. Pavlenko, Generalized eigenstate thermalization in 2d CFTs, arXiv:1903.03559 [INSPIRE]. · Zbl 1409.81117
[17] Afshar, H.; etal., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev., D 93, 101503 (2016)
[18] Afshar, H.; Grumiller, D.; Merbis, W.; Pérez, A.; Tempo, D.; Troncoso, R., Soft hairy horizons in three spacetime dimensions, Phys. Rev., D 95, 106005 (2017)
[19] W. Ames and C. Rogers, Nonlinear equations in the applied sciences, Math. Sci. Eng.185, (1992). · Zbl 0728.00012
[20] Miura, RM, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys., 9, 1202 (1968) · Zbl 0283.35018 · doi:10.1063/1.1664700
[21] Miura, RM; Gardner, CS; Kruskal, MD, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys., 9, 1204 (1968) · Zbl 0283.35019 · doi:10.1063/1.1664701
[22] Kruskal, MD; Miura, RM; Gardner, CS; Zabusky, NJ, Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., 11, 952 (1970) · Zbl 0283.35022 · doi:10.1063/1.1665232
[23] Gardner, CS; Greene, JM; Kruskal, MD; Miura, RM, Korteweg-de Vries equation and generalizations. VI. Methods for exact solution, Commun. Pure Appl. Math., 27, 97 (1974) · Zbl 0291.35012 · doi:10.1002/cpa.3160270108
[24] A. Das, Integrable models, volume 30, World Scientific, Singapore (1989). · Zbl 0719.70011
[25] Regge, T.; Teitelboim, C., Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys., 88, 286 (1974) · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[26] Bañados, M.; Teitelboim, C.; Zanelli, J., The black hole in three-dimensional space-time, Phys. Rev. Lett., 69, 1849 (1992) · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[27] Bañados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J., Geometry of the (2 + 1) black hole, Phys. Rev., D 48, 1506 (1993)
[28] D. Grumiller and W. Merbis, Near horizon dynamics of three dimensional black holes, preprint TUW-19-01, (2019) [arXiv:1906.10694] [INSPIRE].
[29] Achucarro, A.; Townsend, PK, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett., B 180, 89 (1986) · doi:10.1016/0370-2693(86)90140-1
[30] E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys.B 311 (1988) 46 [INSPIRE]. · Zbl 1258.83032
[31] O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav.12 (1995) 2961 [gr-qc/9506019] [INSPIRE]. · Zbl 0836.53052
[32] D. Grumiller, A. Pérez, M. Sheikh-Jabbari, R. Troncoso and C. Zwikel, Spacetime structure near generic horizons and soft hair, preprint CECS-PHY-18/01.
[33] G. Barnich and C. Troessaert, BMS charge algebra, JHEP12 (2011) 105 [arXiv:1106.0213] [INSPIRE]. · Zbl 1306.83002
[34] C. Bunster, A. Gomberoff and A. Pérez, Regge-Teitelboim analysis of the symmetries of electromagnetic and gravitational fields on asymptotically null spacelike surfaces, arXiv:1805.03728 [INSPIRE].
[35] C. Bunster, A. Gomberoff and A. Pérez, Bondi-Metzner-Sachs invariance and electric-magnetic duality, arXiv:1905.07514 [INSPIRE].
[36] Hawking, SW; Perry, MJ; Strominger, A., Soft hair on black holes, Phys. Rev. Lett., 116, 231301 (2016) · doi:10.1103/PhysRevLett.116.231301
[37] S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP05 (2017) 161 [arXiv:1611.09175] [INSPIRE]. · Zbl 1380.83143
[38] Barnich, G.; Troessaert, C.; Tempo, D.; Troncoso, R., Asymptotically locally flat spacetimes and dynamical nonspherically-symmetric black holes in three dimensions, Phys. Rev., D 93, 084001 (2016)
[39] Bergshoeff, EA; Hohm, O.; Townsend, PK, Massive gravity in three dimensions, Phys. Rev. Lett., 102, 201301 (2009) · doi:10.1103/PhysRevLett.102.201301
[40] Bergshoeff, EA; Hohm, O.; Townsend, PK, More on massive 3D gravity, Phys. Rev., D 79, 124042 (2009)
[41] Benguria, R.; Cordero, P.; Teitelboim, C., Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields with applications to spherical symmetry, Nucl. Phys., B 122, 61 (1977) · doi:10.1016/0550-3213(77)90426-6
[42] Gonzalez, HA; Tempo, D.; Troncoso, R., Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes, JHEP, 11, 066 (2011) · Zbl 1306.83044 · doi:10.1007/JHEP11(2011)066
[43] Melnikov, D.; Novaes, F.; Pérez, A.; Troncoso, R., Lifshitz scaling, microstate counting from number theory and black hole entropy, JHEP, 06, 054 (2019) · Zbl 1416.83058 · doi:10.1007/JHEP06(2019)054
[44] Hardy, GH; Ramanujan, S., Asymptotic formulaae in combinatory analysis, Proc. London Math. Soc., s2-17, 75 (1918) · JFM 46.0198.04 · doi:10.1112/plms/s2-17.1.75
[45] Wright, EM, Asymptotic partition formulae. III. Partitions into k-th powers, Acta Math., 63, 143 (1934) · JFM 60.0135.01 · doi:10.1007/BF02547353
[46] González, HA; Matulich, J.; Pino, M.; Troncoso, R., Revisiting the asymptotic dynamics of general relativity on AdS_3, JHEP, 12, 115 (2018) · Zbl 1405.83005 · doi:10.1007/JHEP12(2018)115
[47] Blencowe, MP, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav., 6, 443 (1989) · doi:10.1088/0264-9381/6/4/005
[48] Bergshoeff, E.; Blencowe, MP; Stelle, KS, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys., 128, 213 (1990) · Zbl 0707.17019 · doi:10.1007/BF02108779
[49] Vasiliev, MA, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys., D 5, 763 (1996) · doi:10.1142/S0218271896000473
[50] Henneaux, M.; Rey, S-J, Nonlinear W_∞as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP, 12, 007 (2010) · Zbl 1294.81137 · doi:10.1007/JHEP12(2010)007
[51] Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S., Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP, 11, 007 (2010) · Zbl 1294.81240 · doi:10.1007/JHEP11(2010)007
[52] Grumiller, D.; Pérez, A.; Prohazka, S.; Tempo, D.; Troncoso, R., Higher spin black holes with soft hair, JHEP, 10, 119 (2016) · Zbl 1390.83201 · doi:10.1007/JHEP10(2016)119
[53] M. Ammon, D. Grumiller, S. Prohazka, M. Riegler and R. Wutte, Higher-spin flat space cosmologies with soft hair, JHEP05 (2017) 031 [arXiv:1703.02594] [INSPIRE]. · Zbl 1380.83293
[54] Smirnov, FA; Zamolodchikov, AB, On space of integrable quantum field theories, Nucl. Phys., B 915, 363 (2017) · Zbl 1354.81033 · doi:10.1016/j.nuclphysb.2016.12.014
[55] A.B. Zamolodchikov, Expectation value of composite field T \(\overline{T}\) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
[56] Cavaglià, A.; Negro, S.; Szécsényi, IM; Tateo, R., T \(\overline{T} \)-deformed 2D quantum field theories, JHEP, 10, 112 (2016) · Zbl 1390.81494 · doi:10.1007/JHEP10(2016)112
[57] Cardy, J., The T \(\overline{T}\) deformation of quantum field theory as random geometry, JHEP, 10, 186 (2018) · Zbl 1402.81216 · doi:10.1007/JHEP10(2018)186
[58] Aharony, O.; Vaknin, T., The T \(\overline{T}\) deformation at large central charge, JHEP, 05, 166 (2018) · Zbl 1391.81113
[59] Datta, S.; Jiang, Y., T \(\overline{T}\) deformed partition functions, JHEP, 08, 106 (2018) · Zbl 1396.81172 · doi:10.1007/JHEP08(2018)106
[60] Aharony, O.; Datta, S.; Giveon, A.; Jiang, Y.; Kutasov, D., Modular invariance and uniqueness of T \(\overline{T}\) deformed CFT, JHEP, 01, 086 (2019) · Zbl 1409.81103 · doi:10.1007/JHEP01(2019)086
[61] Guica, M., An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost Phys., 5, 048 (2018) · doi:10.21468/SciPostPhys.5.5.048
[62] Chakraborty, S.; Giveon, A.; Kutasov, D., J \(\overline{T}\) deformed CFT_2and string theory, JHEP, 10, 057 (2018) · Zbl 1402.81218 · doi:10.1007/JHEP10(2018)057
[63] Aharony, O.; Datta, S.; Giveon, A.; Jiang, Y.; Kutasov, D., Modular covariance and uniqueness of J \(\overline{T}\) deformed CFTs, JHEP, 01, 085 (2019) · Zbl 1409.81102 · doi:10.1007/JHEP01(2019)085
[64] Guica, M., On correlation functions in J \(\overline{T} \)-deformed CFTs, J. Phys., A 52, 184003 (2019) · Zbl 1509.81581
[65] McGough, L.; Mezei, M.; Verlinde, H., Moving the CFT into the bulk with T \(\overline{T} \), JHEP, 04, 010 (2018) · Zbl 1390.81529 · doi:10.1007/JHEP04(2018)010
[66] Giveon, A.; Itzhaki, N.; Kutasov, D., T \(\overline{T}\) and LST, JHEP, 07, 122 (2017) · Zbl 1380.81319 · doi:10.1007/JHEP07(2017)122
[67] Kraus, P.; Liu, J.; Marolf, D., Cutoff AdS_3versus the T \(\overline{T}\) deformation, JHEP, 07, 027 (2018) · Zbl 1395.81230 · doi:10.1007/JHEP07(2018)027
[68] A. Bzowski and M. Guica, The holographic interpretation of J \(\overline{T} \)-deformed CFTs, JHEP01 (2019) 198 [arXiv:1803.09753] [INSPIRE]. · Zbl 1409.81109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.