×

Block-centered finite difference method for a tempered subdiffusion model with time-dependent coefficients. (English) Zbl 1538.65247

Summary: In this paper, the block-centered finite difference method with two kinds of tempered \(L1\) discretizations is introduced for a tempered subdiffusion model with time-dependent coefficients. The present numerical schemes are constructed by using the implicit tempered \(L1\) discretization and the implicit-explicit tempered \(L1\) discretization to approximate the tempered Caputo fractional derivative in the temporal direction and using the block-centered finite difference method to approximate derivatives in the spatial direction. The stability and convergence of the present difference schemes on non-uniform grids for one- and two-dimensional tempered subdiffusion problems are proved. The theoretical analysis shows that the present numerical schemes give the optimal convergence rates for both temporal and spatial variables. Extensive numerical examples are given to verify the theoretical results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35M30 Mixed-type systems of PDEs
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Brunner, H.; Pedas, A.; Vainikko, G., The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations, Math. Comput., 227, 1079-1095 (1999) · Zbl 0941.65136
[2] Cao, J. L.; Xiao, A. G.; Bu, W. P., Finite difference/finite element method for tempered time fractional advection-dispersion equation with fast evaluation of Caputo derivative, J. Sci. Comput., 83, 1-29 (2020) · Zbl 1453.65311
[3] Chen, M. H.; Jiang, Z. S.; Bu, W. P., Two L1 schemes on graded meshes for fractional Feynman-Kac equation, J. Sci. Comput., 88, 1-24 (2021) · Zbl 1500.65039
[4] Deng, W. H.; Zhang, Z. J., Numerical schemes of the time tempered fractional Feynman-Kac equation, Comput. Math. Appl., 73, 1063-1076 (2017) · Zbl 1412.65071
[5] Gu, X. M.; Huang, T. Z.; Zhao, Y. L., A fast implicit difference scheme for solving the generalized time-space fractional diffusion equations with variable coefficients, Numer. Methods Partial Differ. Equ., 37, 1136-1162 (2021) · Zbl 07776007
[6] Jin, B. T.; Li, B. Y.; Zhou, Z., Subdiffusion with a time-dependent coefficient: analysis and numerical solution, Math. Comput., 88, 2157-2186 (2019) · Zbl 1417.65205
[7] Jin, B. T.; Li, B. Y.; Zhou, Z., Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping, Numer. Math., 145, 883-913 (2022) · Zbl 1446.65069
[8] Kopteva, N., Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions, Math. Comput., 88, 2135-2155 (2019) · Zbl 1417.65152
[9] Kubica, A.; Yamamoto, M., Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal., 21, 276-311 (2018) · Zbl 1398.35271
[10] Li, C.; Wang, H. H.; Yue, H. Y., Fast difference scheme for the reaction-diffusion-advection equation with exact artificial boundary conditions, Appl. Numer. Math., 173, 395-417 (2022) · Zbl 1486.65113
[11] Li, C.; Deng, W. H.; Zhao, L. J., Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst., Ser. B, 24, 1989-2015 (2019) · Zbl 1414.34005
[12] Li, X. L.; Rui, H. X., Characteristic block-centred finite difference methods for nonlinear convection-dominated diffusion equation, Int. J. Comput. Math., 94, 386-404 (2017) · Zbl 1365.65197
[13] Li, X. L.; Rui, H. X.; Liu, Z. G., A block-centered finite difference method for fractional Cattaneo equation, Numer. Methods Partial Differ. Equ., 34, 296-316 (2018) · Zbl 1383.65095
[14] Li, C. P.; Yi, Q.; Chen, A., Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316, 614-631 (2016) · Zbl 1349.65246
[15] Liao, H.-L.; Li, D. F.; Zhang, J. W., Sharp error estimate of nonuniform L1 formula for time fractional reaction-subdiffusion equations, SIAM J. Numer. Anal., 56, 1112-1133 (2018) · Zbl 1447.65026
[16] Liu, W.; Cui, J. T., A two-grid block-centered finite difference algorithm for nonlinear compressible Darcy-Forchheimer model in porous media, J. Sci. Comput., 1786-1815 (2018) · Zbl 1384.76040
[17] Liu, Z. G.; Li, X. L., A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation, Comput. Methods Appl. Mech. Eng., 308, 330-348 (2016) · Zbl 1439.65097
[18] Liu, Y. Z.; Roberts, J.; Yan, Y. B., Detailed error analysis for a fractional Adams method with graded meshes, Numer. Algorithms, 71, 207-228 (2016)
[19] Meerschaert, M. M.; Sabzikar, F.; Phanikumar, M. S., Tempered fractional time series model for turbulence in geophysical flows, J. Stat. Mech. Theory Exp., 14, 1742-5468 (2014)
[20] Meerschaert, M. M.; Zhang, Y.; Baeumer, B., Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35 (2018)
[21] Mustapha, K., An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements, IMA J. Numer. Anal., 31, 719-739 (2011) · Zbl 1219.65091
[22] Mustapha, K.; Abdallah, B.; Furati, K. M., A discontinuous Petrov-Galerkin method for time-fractional diffusion equations, SIAM J. Numer. Anal., 52, 2512-2529 (2014) · Zbl 1323.65109
[23] Płociniczak, Ł., Error of the Galerkin scheme for a semilinear subdiffusion equation withtime-dependent coefficients and nonsmooth data, Comput. Math. Appl., 127, 181-191 (2022) · Zbl 1504.65211
[24] Rui, H. X.; Pan, H., Block-centered finite difference methods for parabolic equation with time-dependent coefficient, Jpn. J. Ind. Appl. Math., 30, 681-699 (2013) · Zbl 1301.65095
[25] Russell, T. F.; Wheeler, M. F., Finite element and finite difference methods for continuous flows in porous media, (Ewing, R. E., The Mathematics of Reservoir Simulation (1983), Society for Industrial and Applied Mathematics), 35-106 · Zbl 0572.76089
[26] Shi, J. K.; Chen, M. H., Correction of high-order BDF convolution quadrature for fractional Feynman-Kac equation with Lévy flight, J. Sci. Comput., 85, 1-23 (2020) · Zbl 1480.76088
[27] Shi, Y. L.; Xie, S. S.; Liang, D., High order compact block-centered finite difference schemes for elliptic and parabolic problems, J. Sci. Comput., 87, 1-26 (2021) · Zbl 1476.65192
[28] Stynes, M.; O’Riordan, E.; Gracia, J. L., Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079 (2017) · Zbl 1362.65089
[29] Sun, J.; Nie, D. X.; Deng, W. H., Error estimates for backward fractional Feynman-Kac equation with non-smooth initial data, J. Sci. Comput., 84, 1-23 (2020) · Zbl 1447.65092
[30] Wang, C.; Deng, W. H.; Tang, X. G., A sharp α-robust L1 scheme on graded meshes for two-dimensional time tempered fractional Fokker-Planck equation (2022), arXiv preprint
[31] Wang, Y. M., A high-order compact finite difference method on nonuniform time meshes for variable coefficient reaction-subdiffusion problems with a weak initial singularity, BIT Numer. Math., 61, 1023-1059 (2021) · Zbl 1481.65162
[32] Weiser, A.; Wheeler, M. F., On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal., 25, 351-375 (1988) · Zbl 0644.65062
[33] Yuste, S. B.; Quintana-Murillo, J., Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations, Numer. Algorithms, 71, 207-228 (2016) · Zbl 1335.65075
[34] Zhai, S. Y.; Feng, X. L., A block-centered finite-difference method for the time-fractional diffusion equation on nonuniform grids, Numer. Heat Transf., Part B, 69, 217-233 (2016)
[35] Zhao, L.; Li, C.; Zhao, F. Q., Efficient difference schemes for the Caputo-tempered fractional diffusion equations based on polynomial interpolation, Commun. Appl. Math. Comput., 1-40 (2021) · Zbl 1476.65199
[36] Zhao, X.; Xu, Q. W., Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Appl. Math. Model., 38, 3848-3859 (2014) · Zbl 1429.65210
[37] Zhao, Y.; Gu, X.; Ostermann, A., A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J. Sci. Comput., 88, 11 (2021) · Zbl 1468.76055
[38] Zhang, Y. N.; Sun, Z. Z.; Liao, H.-L., Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265, 195-210 (2014) · Zbl 1349.65359
[39] Zhou, J. F.; Gu, X. M.; Shen, J., A fast compact difference scheme with unequal time-steps for the tempered time-fractional Black-Scholes model (2023), arXiv preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.