×

Efficient difference schemes for the Caputo-tempered fractional diffusion equations based on polynomial interpolation. (English) Zbl 1476.65199

Summary: The tempered fractional calculus has been successfully applied for depicting the time evolution of a system describing non-Markovian diffusion particles. The related governing equations are a series of partial differential equations with tempered fractional derivatives. Using the polynomial interpolation technique, in this paper, we present three efficient numerical formulas, namely the tempered L1 formula, the tempered L1-2 formula, and the tempered L2-\(1_{\sigma}\) formula, to approximate the Caputo-tempered fractional derivative of order \(\alpha \in (0,1)\). The truncation error of the tempered L1 formula is of order \(2- \alpha\), and the tempered L1-2 formula and L2-\(1_{\sigma}\) formula are of order \(3-\alpha\). As an application, we construct implicit schemes and implicit ADI schemes for one-dimensional and two-dimensional time-tempered fractional diffusion equations, respectively. Furthermore, the unconditional stability and convergence of two developed difference schemes with tempered L1 and L2-\(1_{\sigma}\) formulas are proved by the Fourier analysis method. Finally, we provide several numerical examples to demonstrate the correctness and effectiveness of the theoretical analysis.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Alikhanov, AA, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424-438 (2015) · Zbl 1349.65261
[2] Baeumera, B.; Meerschaert, MM, Tempered stable Lévy motion and transient super-diffusion, J. Comput. Appl. Math., 233, 2438-2448 (2010) · Zbl 1423.60079
[3] Cao, JX; Li, CP; Chen, YQ, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II), Fract. Calc. Appl. Anal., 18, 735-761 (2015) · Zbl 1325.65121
[4] Chen, MH; Deng, WH, High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights, SIAM J. Sci. Comput., 37, A890-A917 (2015) · Zbl 1317.65198
[5] Chen, MH; Deng, WH, High order algorithm for the time-tempered fractional Feynman-Kac equation, J. Sci. Comput., 76, 867-887 (2018) · Zbl 1395.65013
[6] Chen, CM; Liu, F.; Burrage, K., Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comput., 198, 754-769 (2008) · Zbl 1144.65057
[7] Chen, S.; Shen, J.; Wang, LL, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput., 85, 1603-1638 (2016) · Zbl 1335.65066
[8] Dehghan, M.; Abbaszadeh, M.; Deng, WH, Fourth-order numerical method for the space time tempered fractional diffusion-wave equation, Appl. Math. Lett., 73, 120-127 (2017) · Zbl 1375.65173
[9] Deng, WH; Zhang, ZJ, Numerical schemes of the time tempered fractional Feynman-Kac equation, Comput. Math. Appl., 73, 1063-1076 (2017) · Zbl 1412.65071
[10] Dimitrov, Y., A second order approximation for the Caputo fractional derivative, J. Frac. Cal. Appl., 7, 175-195 (2016) · Zbl 1488.26013
[11] Dimitrov, Y., Three-point approximation for the Caputo fractional derivative, Comm. Appl. Math. Comput., 31, 413-442 (2017) · Zbl 1399.26010
[12] Ding, HF; Li, CP, High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (II), Appl. Math. Lett., 86, 208-214 (2018) · Zbl 1407.65100
[13] Gajda, J.; Magdziarz, M., Fractional Fokker-Planck equation with tempered \(\alpha \)-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E, 82, 011117 (2010)
[14] Gao, GH; Sun, ZZ; Zhang, HW, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33-50 (2014) · Zbl 1349.65088
[15] Gracia, JL; Stynes, M., Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems, J. Comput. Appl. Math., 273, 103-115 (2015) · Zbl 1295.65081
[16] Henry, BI; Langlands, TAM; Wearne, SL, Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations, Phys. Rev. E, 74, 031116 (2006)
[17] Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21, 650-678 (2017) · Zbl 1488.65247
[18] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equation (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[19] Li, C.; Deng, WH, High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math., 42, 543-572 (2016) · Zbl 1347.65136
[20] Li, CP; Wu, RF; Ding, HF, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (I), Commun. Appl. Ind. Math., 6, 536 (2014) · Zbl 1329.65182
[21] Li, C.; Deng, WH; Zhao, LJ, Well posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B, 24, 1989-2015 (2019) · Zbl 1414.34005
[22] Li, C.; Sun, XR; Zhao, FQ, LDG schemes with second order implicit time discretization for a fractional sub-diffusion equation, Results Appl. Math., 4, 100079 (2019) · Zbl 1451.65108
[23] Lin, YM; Xu, CJ, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121
[24] Liu, F.; Zhuang, PH; Liu, QX, The Applications and Numerical Methods of Fractional Differential Equations (2015), Beijing: Science Press, Beijing
[25] Lubich, Ch, Discretized fractional calculus, SIAM J. Math. Anal., 17, 704-719 (1986) · Zbl 0624.65015
[26] Meerschaert, MM; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 65-77 (2004) · Zbl 1126.76346
[27] Meerschaert, MM; Zhang, Y.; Baeumer, B., Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35, L17403 (2008)
[28] Metzler, R.; Barkai, E.; Klafter, J., Deriving fractional Fokker-Planck equations from generalised master equation, Europhys. Lett., 46, 431-436 (1999)
[29] Oldham, KB; Spanier, J., The Fractional Calculus (1974), New York: Academic Press, New York · Zbl 0292.26011
[30] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[31] Sabzikar, F.; Meerschaert, MM; Chen, JH, Tempered fractional calculus, J. Comput. Phys., 293, 14-28 (2015) · Zbl 1349.26017
[32] Samko, S.; Kilbas, A.; Marichev, O., Fractional Integrals and Derivatives: Theory and Applications (1993), London: Gordon and Breach, London · Zbl 0818.26003
[33] Schmidt, MGW; Sagués, F.; Sokolov, IM, Mesoscopic description of reactions for anomalous diffusion: a case study, J. Phys. Condens. Matter., 19, 065118 (2007)
[34] Sousa, E.; Li, C., A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville drivative, Appl. Numer. Math., 90, 22-37 (2015) · Zbl 1326.65111
[35] Sun, ZZ; Wu, XN, A fully discrete difference scheme for a diffusion wave system, Appl. Numer. Math., 56, 193-209 (2006) · Zbl 1094.65083
[36] Sun, XR; Li, C.; Zhao, FQ, Local discontinuous Galerkin methods for the time tempered fractional diffusion equation, Appl. Math. Comput., 365, 124725 (2020) · Zbl 1433.65166
[37] Tatar, N., The decay rate for a fractional differential equation, J. Math. Anal. Appl., 295, 303-314 (2004) · Zbl 1052.35111
[38] Wang, ZB; Vong, SW, Compact difference schemes for the modified anomalous fractional subdiffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277, 1-15 (2014) · Zbl 1349.65348
[39] Zayernouri, M.; Ainsworth, M.; Karniadakis, G., Tempered fractional Sturm-Liouville eigenproblems, SIAM J. Sci. Comput., 37, A1777-A1800 (2015) · Zbl 1323.34012
[40] Zhang, Y., Moments for tempered fractional advection-diffusion equations, J. Stat. Phys., 139, 915-939 (2010) · Zbl 1301.82044
[41] Zhang, ZJ; Deng, WH, Numerical approaches to the functional distribution of anomalous diffusion with both traps and flights, Adv. Comput. Math., 43, 1-34 (2017) · Zbl 1380.65210
[42] Zhang, YN; Sun, ZZ, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 230, 8713-8728 (2011) · Zbl 1242.65174
[43] Zhang, H.; Liu, F.; Turner, I.; Chen, S., The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option, Appl. Math. Model., 40, 5819-5834 (2016) · Zbl 1465.91131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.