×

Correction of high-order BDF convolution quadrature for fractional Feynman-Kac equation with Lévy flight. (English) Zbl 1480.76088

Summary: In this work, we present the correction schemes of the \(k\)-step BDF convolution quadrature at the starting \(k-1\) steps for the fractional Feynman-Kac equation with Lévy flight. Based on the idea of B. Jin et al. [SIAM J. Sci. Comput. 39, No. 6, A3129–A3152 (2017; Zbl 1379.65078)], we provide a detailed \(k\) th-order convergence analysis for the correction BDF \(k\) with nonsmooth data. The numerical experiments with spectral method are given to illustrate theoretical results. Moreover, some simulations and corresponding theoretical for the correction BDF \(k\) of the multi-term time fractional model are extended.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76R99 Diffusion and convection
26A33 Fractional derivatives and integrals

Citations:

Zbl 1379.65078

References:

[1] Bazhlekova, E.; Jin, B.; Lazarov, R.; Zhou, Z., An analysis of Rayleigh-Stokes problem for a generalized second-grade fluid, Numer. Math., 131, 1-31 (2015) · Zbl 1325.76113 · doi:10.1007/s00211-014-0685-2
[2] Carmi, S.; Barkai, E., Fractional Feynman-Kac equation for weak ergodicity breaking, Phys. Rev. E, 84, 061104 (2011) · doi:10.1103/PhysRevE.84.061104
[3] Carmi, S.; Turgeman, L.; Barkai, E., On distributions of functionals of anomalous diffusion paths, J. Stat. Phys., 141, 1071-1092 (2010) · Zbl 1205.82079 · doi:10.1007/s10955-010-0086-6
[4] Chen, C-M; Liu, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227, 886-897 (2007) · Zbl 1165.65053 · doi:10.1016/j.jcp.2007.05.012
[5] Chen, MH; Deng, WH, Discretized fractional substantial calculus, ESAIM Math. Model. Numer. Anal. (M2AN), 49, 373-394 (2015) · Zbl 1314.26007
[6] Chen, MH; Deng, WH, High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights, SIAM J. Sci. Comput., 37, A890-A917 (2015) · Zbl 1317.65198 · doi:10.1137/14097207X
[7] Chen, MH; Deng, WH, High order algorithm for the time-tempered fractional Feynman-Kac equation, J. Sci. Comput., 76, 867-887 (2018) · Zbl 1395.65013 · doi:10.1007/s10915-018-0640-y
[8] Chen, MH; Deng, WH; Wu, YJ, Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation, Appl. Numer. Math., 70, 22-41 (2013) · Zbl 1283.65082 · doi:10.1016/j.apnum.2013.03.006
[9] Cuesta, E.; Lubich, Ch; Palencia, C., Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comput., 75, 673-696 (2006) · Zbl 1090.65147 · doi:10.1090/S0025-5718-06-01788-1
[10] Deng, WH; Chen, MH; Barkai, E., Numerical algorithms for the forward and backward fractional Feynman-Kac equations, J. Sci. Comput., 62, 718-746 (2015) · Zbl 1335.65069 · doi:10.1007/s10915-014-9873-6
[11] Dungey, N., Asymptotic type for sectorial operators and integral of fractional powers, J. Funct. Anal., 256, 1387-1407 (2009) · Zbl 1162.47032 · doi:10.1016/j.jfa.2008.07.020
[12] Deng, WH; Li, BY; Qian, Z.; Wang, H., Time discretization of a tempered fractional Feynman-Kac equation with measure data, SIAM J. Numer. Anal., 56, 3249-3275 (2018) · Zbl 1405.65141 · doi:10.1137/17M1118245
[13] Friedrich, R.; Jenko, F.; Baule, A.; Eule, S., Anomalous diffusion of inertial, weakly damped particles, Phys. Rev. Lett., 96, 230601 (2006) · doi:10.1103/PhysRevLett.96.230601
[14] Gao, GH; Sun, HH; Sun, ZZ, Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equation based on certain superconvergence, J. Comput. Phys., 280, 510-528 (2015) · Zbl 1349.65295 · doi:10.1016/j.jcp.2014.09.033
[15] Hao, ZP; Cao, WR; Lin, G., A second-order difference scheme for the time fractional substantial diffusion equation, J. Comput. Appl. Math., 313, 54-69 (2017) · Zbl 1351.26014 · doi:10.1016/j.cam.2016.09.006
[16] Huang, C.; Zhang, ZM; Song, QS, Spectral methods for substantial fractional differential equations, J. Sci. Comput., 74, 1554-1574 (2018) · Zbl 1398.65317 · doi:10.1007/s10915-017-0506-8
[17] Ji, CC; Sun, ZZ, A high-order compact finite difference schemes for the fractional sub-diffusion equation, J. Sci. Comput., 64, 959-985 (2015) · Zbl 1328.65176 · doi:10.1007/s10915-014-9956-4
[18] Jin, B.; Lazarov, R.; Zhou, Z., Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38, A146-A170 (2016) · Zbl 1381.65082 · doi:10.1137/140979563
[19] Jin, B.; Li, BY; Zhou, Z., Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39, A3129-A3152 (2017) · Zbl 1379.65078 · doi:10.1137/17M1118816
[20] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), New York: Elsevier, New York · Zbl 1092.45003
[21] Li, CP; Ding, HF, Higher order finite difference method for the reaction and anomalous-diffusion equation, Appl. Math. Model., 38, 3802-3821 (2014) · Zbl 1429.65188 · doi:10.1016/j.apm.2013.12.002
[22] Lin, YM; Xu, CJ, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[23] Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.; Ainsworth, M.; Karniadakis, G., What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys., 404, 109009 (2020) · Zbl 1453.35179 · doi:10.1016/j.jcp.2019.109009
[24] Lubich, Ch, Discretized fractional calculus, SIAM J. Math. Anal., 17, 704-719 (1986) · Zbl 0624.65015 · doi:10.1137/0517050
[25] Lubich, Ch, Convolution quadrature revisited, BIT, 44, 503-514 (2004) · Zbl 1083.65123 · doi:10.1023/B:BITN.0000046813.23911.2d
[26] Lubich, Ch; Sloan, IH; Thomée, V., Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comput., 65, 1-17 (1996) · Zbl 0852.65138 · doi:10.1090/S0025-5718-96-00677-1
[27] Lv, CH; Xu, CJ, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38, A2699-A2724 (2016) · Zbl 1348.65123 · doi:10.1137/15M102664X
[28] Martínez, C.; Sanz, M., The Theory of Fractional Powers of Operators (2001), New York: Elsevier, New York · Zbl 0971.47011
[29] Meerschaert, M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[30] Oldham, KB; Spanier, J., The Fractional Calculus (1974), New York: Academic Press, New York · Zbl 0292.26011
[31] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 426-447 (2011) · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[32] Shen, J.; Tang, T.; Wang, LL, Spectral Methods: Algorithms, Analysis and Applications (2011), Berlin: Springer, Berlin · Zbl 1227.65117
[33] Stynes, M.; O’riordan, E.; Gracia, JL, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079 (2017) · Zbl 1362.65089 · doi:10.1137/16M1082329
[34] Sun, J.; Nie, DX; Deng, WH, Error estimates for backward fractional Feynman-Kac equation with non-smooth initial data, J. Sci. Comput., 84, 6 (2020) · Zbl 1447.65092 · doi:10.1007/s10915-020-01256-3
[35] Sun, ZZ; Wu, XN, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 193-209 (2006) · Zbl 1094.65083 · doi:10.1016/j.apnum.2005.03.003
[36] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems (2006), New York: Springer, New York · Zbl 1105.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.