×

Subdiffusion with a time-dependent coefficient: analysis and numerical solution. (English) Zbl 1417.65205

Summary: In this work, a complete error analysis is presented for fully discrete solutions of the subdiffusion equation with a time-dependent diffusion coefficient, obtained by the Galerkin finite element method with conforming piecewise linear finite elements in space and backward Euler convolution quadrature in time. The regularity of the solutions of the subdiffusion model is proved for both nonsmooth initial data and incompatible source term. Optimal-order convergence of the numerical solutions is established using the proven solution regularity and a novel perturbation argument via freezing the diffusion coefficient at a fixed time. The analysis is supported by numerical experiments.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Akrivis, Georgios; Li, Buyang; Lubich, Christian, Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations, Math. Comp., 86, 306, 1527-1552 (2017) · Zbl 1361.65053 · doi:10.1090/mcom/3228
[2] Alikhanov, Anatoly A., A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424-438 (2015) · Zbl 1349.65261 · doi:10.1016/j.jcp.2014.09.031
[3] Bajlekova, Emilia Grigorova, Fractional evolution equations in Banach spaces, iv+107 pp. (2001), Eindhoven University of Technology, Eindhoven · Zbl 0989.34002
[4] Eidelman, Samuil D.; Kochubei, Anatoly N., Cauchy problem for fractional diffusion equations, J. Differential Equations, 199, 2, 211-255 (2004) · Zbl 1068.35037 · doi:10.1016/j.jde.2003.12.002
[5] Elliott, Charles M.; Larsson, Stig, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comp., 58, 198, 603-630, S33-S36 (1992) · Zbl 0762.65075 · doi:10.2307/2153205
[6] Fujita, Hiroshi; Suzuki, Takashi, Evolution problems. Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, 789-928 (1991), North-Holland, Amsterdam · Zbl 0875.65084
[7] Gao, Guang-hua; Sun, Zhi-zhong; Zhang, Hong-wei, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33-50 (2014) · Zbl 1349.65088 · doi:10.1016/j.jcp.2013.11.017
[8] Henry, Daniel, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, iv+348 pp. (1981), Springer-Verlag, Berlin-New York · Zbl 0456.35001
[9] Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA J. Numer. Anal., 35, 2, 561-582 (2015) · Zbl 1321.65142 · doi:10.1093/imanum/dru018
[10] Jin, Bangti; Lazarov, Raytcho; Zhou, Zhi, Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview, Comput. Methods Appl. Mech. Engrg., 346, 332-358 (2019) · Zbl 1440.65138 · doi:10.1016/j.cma.2018.12.011
[11] Jin, Bangti; Lazarov, Raytcho; Zhou, Zhi, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51, 1, 445-466 (2013) · Zbl 1268.65126 · doi:10.1137/120873984
[12] Jin, Bangti; Lazarov, Raytcho; Zhou, Zhi, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38, 1, A146-A170 (2016) · Zbl 1381.65082 · doi:10.1137/140979563
[13] Jin, Bangti; Li, Buyang; Zhou, Zhi, Numerical analysis of nonlinear subdiffusion equations, SIAM J. Numer. Anal., 56, 1, 1-23 (2018) · Zbl 1422.65228 · doi:10.1137/16M1089320
[14] Karaa, Samir, Semidiscrete finite element analysis of time fractional parabolic problems: a unified approach, SIAM J. Numer. Anal., 56, 3, 1673-1692 (2018) · Zbl 1397.65188 · doi:10.1137/17M1134160
[15] Karaa, Samir; Mustapha, Kassem; Pani, Amiya K., Finite volume element method for two-dimensional fractional subdiffusion problems, IMA J. Numer. Anal., 37, 2, 945-964 (2017) · Zbl 1433.65214 · doi:10.1093/imanum/drw010
[16] Kilbas, Anatoly A.; Srivastava, Hari M.; Trujillo, Juan J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, xvi+523 pp. (2006), Elsevier Science B.V., Amsterdam · Zbl 1092.45003
[17] Kubica, Adam; Yamamoto, Masahiro, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal., 21, 2, 276-311 (2018) · Zbl 1398.35271 · doi:10.1515/fca-2018-0018
[18] Kunstmann, Peer C.; Li, Buyang; Lubich, Christian, Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity, Found. Comput. Math., 18, 5, 1109-1130 (2018) · Zbl 1410.65347 · doi:10.1007/s10208-017-9364-x
[19] Lee, Hyoseop; Lee, Jinwoo; Sheen, Dongwoo, Laplace transform method for parabolic problems with time-dependent coefficients, SIAM J. Numer. Anal., 51, 1, 112-125 (2013) · Zbl 1264.35010 · doi:10.1137/110824000
[20] Li, Buyang; Sun, Weiwei, Regularity of the diffusion-dispersion tensor and error analysis of Galerkin FEMs for a porous medium flow, SIAM J. Numer. Anal., 53, 3, 1418-1437 (2015) · Zbl 1320.76069 · doi:10.1137/140958803
[21] Lin, Yumin; Xu, Chuanju, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 2, 1533-1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[22] Lubich, Ch., Discretized fractional calculus, SIAM J. Math. Anal., 17, 3, 704-719 (1986) · Zbl 0624.65015 · doi:10.1137/0517050
[23] Luchko, Yury, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351, 1, 218-223 (2009) · Zbl 1172.35341 · doi:10.1016/j.jmaa.2008.10.018
[24] Luskin, Mitchell; Rannacher, Rolf, On the smoothing property of the Galerkin method for parabolic equations, SIAM J. Numer. Anal., 19, 1, 93-113 (1982) · Zbl 0483.65064 · doi:10.1137/0719003
[25] McLean, William, Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52, 2, 123-138 (2010) · Zbl 1228.35266 · doi:10.1017/S1446181111000617
[26] McLean, William; Mustapha, Kassem, Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation, Numer. Algorithms, 52, 1, 69-88 (2009) · Zbl 1177.65194 · doi:10.1007/s11075-008-9258-8
[27] McLean, William; Mustapha, Kassem, Time-stepping error bounds for fractional diffusion problems with non-smooth initial data, J. Comput. Phys., 293, 201-217 (2015) · Zbl 1349.65469 · doi:10.1016/j.jcp.2014.08.050
[28] Mustapha, Kassem, FEM for time-fractional diffusion equations, novel optimal error analyses, Math. Comp., 87, 313, 2259-2272 (2018) · Zbl 1394.65086 · doi:10.1090/mcom/3304
[29] Sakamoto, Kenichi; Yamamoto, Masahiro, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 1, 426-447 (2011) · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[30] Sammon, Peter, Fully discrete approximation methods for parabolic problems with nonsmooth initial data, SIAM J. Numer. Anal., 20, 3, 437-470 (1983) · Zbl 0523.65069 · doi:10.1137/0720031
[31] Savar\'{e}, Giuseppe, \(A(\Theta)\)-stable approximations of abstract Cauchy problems, Numer. Math., 65, 3, 319-335 (1993) · Zbl 0791.65077 · doi:10.1007/BF01385755
[32] Stynes, Martin; O’Riordan, Eugene; Gracia, Jos\'{e} Luis, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 2, 1057-1079 (2017) · Zbl 1362.65089 · doi:10.1137/16M1082329
[33] Sun, Zhi-zhong; Wu, Xiaonan, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209 (2006) · Zbl 1094.65083 · doi:10.1016/j.apnum.2005.03.003
[34] Thom\'{e}e, Vidar, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics 25, xii+370 pp. (2006), Springer-Verlag, Berlin · Zbl 1105.65102
[35] Yan, Yubin; Khan, Monzorul; Ford, Neville J., An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data, SIAM J. Numer. Anal., 56, 1, 210-227 (2018) · Zbl 1381.65070 · doi:10.1137/16M1094257
[36] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 5, 1862-1874 (2005) · Zbl 1119.65379 · doi:10.1137/030602666
[37] Zacher, Rico, A De Giorgi-Nash type theorem for time fractional diffusion equations, Math. Ann., 356, 1, 99-146 (2013) · Zbl 1264.35271 · doi:10.1007/s00208-012-0834-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.