×

Finite difference/finite element method for tempered time fractional advection-dispersion equation with fast evaluation of Caputo derivative. (English) Zbl 1453.65311

Summary: In this paper, a class of fractional advection-dispersion equations with Caputo tempered fractional derivative are considered numerically. An efficient algorithm for the evaluation of Caputo tempered fractional derivative is proposed to sharply reduce the computational work and storage, and this is of great significance for large-scale problems. Based on the nonsmooth regularity assumptions, a semi-discrete form is obtained by finite difference method in time, and its stability and convergence are investigated. Then by finite element method, we derive the corresponding fully discrete scheme and discuss its convergence. At last, some numerical examples, based on different domains, are presented to demonstrate effectiveness of numerical schemes and confirm the theoretical analysis.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Almeida, R.; Pooseh, S.; Torres, DFM, Computational Methods in the Fractional Calculus of Variations (2015), Singapore: World Scientific Publishing Company, Singapore · Zbl 1322.49001
[2] Brenner, S.; Scott, R., The Mathematical Theory of Finite Element Methods (2007), New York: Springer, New York
[3] Brunner, H., Collocation Methods for Volterra Integral and Related Functional Equations (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1059.65122
[4] Brunner, H.; Han, H.; Yin, D., Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain, J. Comput. Phys., 276, 541-562 (2014) · Zbl 1349.65272
[5] Bu, W.; Tang, Y.; Wu, Y.; Yang, J., Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations, J. Comput. Phys., 293, 264-279 (2015) · Zbl 1349.65440
[6] Bu, W.; Tang, Y.; Yang, J., Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys., 276, 26-38 (2014) · Zbl 1349.65441
[7] Bu, W.; Xiao, A.; Zeng, W., Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 72, 1-20 (2017)
[8] Bu, W.; Tang, Y.; Wu, Y.; Yang, J., Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model, Appl. Math. Comput., 257, 355-364 (2015) · Zbl 1339.65170
[9] Bu, W.; Liu, X.; Tang, Y.; Yang, J., Finite element multigrid method for multi-term time fractional advection diffusion equations, Int. J. Model. Simul. Sci. Comput., 6, 1540001 (2015)
[10] Cao, W.; Zeng, F.; Zhang, Z.; Karniadakis, GE, Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput., 38, A3070-A3093 (2016) · Zbl 1355.65104
[11] Chen, H.; Xu, D.; Cao, J.; Zhou, J., A backward Euler alternating direction implicit difference scheme for the three-dimensional fractional evolution equation, Numer. Methods Partial Differ. Equ., 34, 938-958 (2018) · Zbl 1407.65096
[12] Chen, M.; Deng, W., A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett., 68, 87-93 (2017) · Zbl 1361.65100
[13] Chen, S.; Shen, J.; Wang, LL, Laguerre functions and their applications to tempered fractional differential equations on infinite intervals, J. Sci. Comput., 74, 1286-1313 (2017) · Zbl 1398.65314
[14] Cryer, CC; Crank, J., Free and moving boundary problems, Math. Comput., 46, 429-500 (2006)
[15] Deng, W.; Zhang, Z., Variational formulation and efficient implementation for solving the tempered fractional problems, Numer. Methods Partial Differ. Equ., 34, 1224-1257 (2018) · Zbl 1407.82055
[16] Ding, Z.; Xiao, A.; Li, M., Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients, J. Comput. Appl. Math., 233, 1905-1914 (2010) · Zbl 1185.65146
[17] Fenner, RT, Finite Element Methods for Engineers (2013), Singapore: World Scientific Publishing Company, Singapore
[18] Gao, G.; Sun, Z.; Zhang, Y., A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions, J. Comput. Phys., 231, 2865-2879 (2012) · Zbl 1242.65160
[19] Gao, G.; Sun, Z., The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain, J. Comput. Phys., 236, 443-460 (2013) · Zbl 1286.35251
[20] Gracia, JL; O’Riordan, E.; Stynes, M., A fitted scheme for a Caputo initial-boundary value problem, J. Sci. Comput., 10, 1-27 (2018)
[21] Hao, Z.; Cao, W., An improved algorithm based on finite difference schemes for fractional boundary value problems with nonsmooth solution, J. Sci. Comput., 73, 395-415 (2017) · Zbl 1377.26009
[22] Huang, C.; Stynes, M.; An, N., Optimal \(L^\infty (L^2)\) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem, BIT Numer. Math., 58, 661-690 (2018) · Zbl 1433.65212
[23] Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21, 650-678 (2017) · Zbl 1488.65247
[24] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[25] Li, C.; Deng, W., High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math., 42, 543-572 (2016) · Zbl 1347.65136
[26] Li, C.; Yi, Q.; Chen, A., Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316, 614-631 (2016) · Zbl 1349.65246
[27] Liao, H.; Li, D.; Zhang, J., Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56, 1112-1133 (2018) · Zbl 1447.65026
[28] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121
[29] Malinowska, AB; Odzijewicz, T.; Torres, DFM, Advanced Methods in the Fractional Calculus of Variations (2015), Cham: Springer, Cham · Zbl 1330.49001
[30] Meerschaert, MM; Zhang, Y.; Baeumer, B., Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35, L17403 (2008)
[31] Oldham, K.; Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (1974), New York: Academic Press, New York · Zbl 0292.26011
[32] Ortigueira, MD, Fractional Calculus for Scientists and Engineers (2011), Dordrecht: Springer, Dordrecht · Zbl 1251.26005
[33] Strang, G.; Fix, GJ, An Analysis of the Finite Element Method (1973), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0278.65116
[34] Stynes, M.; O’Riordan, E.; Gracia, JL, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079 (2017) · Zbl 1362.65089
[35] Tarasov, VE, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (2011), Beijing/Berlin: Higher Education Press/Springer, Beijing/Berlin
[36] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems (1984), Berlin: Springer, Berlin · Zbl 0528.65052
[37] Wang, D.; Xiao, A.; Yang, W., Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242, 670-681 (2013) · Zbl 1297.65100
[38] Wang, D.; Xiao, A.; Yang, W., Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Appl. Math. Comput., 257, 241-251 (2015) · Zbl 1339.65137
[39] Wang, J.; Xiao, A., An efficient conservative difference scheme for fractional Klein-Gordon-Schrödinger equations, Appl. Math. Comput., 320, 691-709 (2018) · Zbl 1427.65189
[40] Xia, Y.; Wu, J.; Zhang, Y., Tempered time-fractional advection-dispersion equation for modeling non-Fickian transport, Adv. Water. Sci., 24, 349-357 (2013)
[41] Zhao, Y.; Bu, W.; Huang, J.; Liu, D.; Tang, Y., Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput., 257, 553-565 (2015) · Zbl 1339.65185
[42] Zhang, Y.; Sun, ZZ; Liao, HL, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265, 195-210 (2014) · Zbl 1349.65359
[43] Zienkiewicz, OC; Taylor, RL; Zienkiewicz, OC, The Finite Element Method (1977), London: McGraw-Hill, London · Zbl 0435.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.