×

Non-trivial gravitational waves and structure formation phenomenology from dark energy. (English) Zbl 1536.83105

Summary: The detection of the GW170817/GRB170817A event improved the constraints on the propagation speed of gravitational waves, thus placing possible variations caused by dark energy under restraint. For models based on scalar fields belonging to the family of Horndeski Lagrangians, non-minimal derivative couplings are now severely constrained, entailing a substantially limited phenomenology. In this work we want to stress that there is still a plethora of dark energy models that get around this obstacle while still providing interesting phenomenologies able to distinguish them from the standard cosmology. We focus on a class involving vector fields as a proxy, but our discussion is extensible to a broader class of models. In particular, we show the possibility of having a non-minimal derivative coupling giving a non-trivial effect on scalar modes without affecting gravitational waves and the possibility of having a second tensor mode that can oscillate into gravitational waves. We also present a novel class of configurations breaking rotational invariance but with an energy-momentum tensor that is isotropic on-shell. This peculiar feature makes the scalar and vector sectors of the perturbations mix so that, even in a perfectly isotropic background cosmology, preferred direction effects can appear in the perturbations. We also comment on models that give rise to isotropic solutions when averaging over rapid oscillations of the vector fields. The explored models are classified according to distinctive field configurations that provide inequivalent realisations of the Cosmological Principle.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology
83C56 Dark matter and dark energy

References:

[1] C.M. Will, 2014 The Confrontation between General Relativity and Experiment https://doi.org/10.12942/lrr-2014-4 Living Rev. Rel.17 4 [1403.7377] · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[2] N. Wex, Testing Relativistic Gravity with Radio Pulsars, [1402.5594]
[3] N. Yunes and S.A. Hughes, 2010 Binary Pulsar Constraints on the Parameterized post-Einsteinian Framework https://doi.org/10.1103/PhysRevD.82.082002 Phys. Rev. D 82 082002 [1007.1995] · doi:10.1103/PhysRevD.82.082002
[4] K. Yagi, D. Blas, N. Yunes and E. Barausse, 2014 Strong Binary Pulsar Constraints on Lorentz Violation in Gravity https://doi.org/10.1103/PhysRevLett.112.161101 Phys. Rev. Lett.112 161101 [1307.6219] · doi:10.1103/PhysRevLett.112.161101
[5] J. Beltran Jimenez, F. Piazza and H. Velten, 2016 Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars https://doi.org/10.1103/PhysRevLett.116.061101 Phys. Rev. Lett.116 061101 [1507.05047] · doi:10.1103/PhysRevLett.116.061101
[6] G.D. Moore and A.E. Nelson, 2001 Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation J. High Energy Phys. JHEP09(2001)023 [hep-ph/0106220]
[7] R. Kimura and K. Yamamoto, 2012 Constraints on general second-order scalar-tensor models from gravitational Cherenkov radiation J. Cosmol. Astropart. Phys.2012 07 050 [1112.4284]
[8] B. Allen, 2018 Can a pure vector gravitational wave mimic a pure tensor one? https://doi.org/10.1103/PhysRevD.97.124020 Phys. Rev. D 97 124020 [1801.04800] · doi:10.1103/PhysRevD.97.124020
[9] Virgo and LIGO Scientific collaborations, B.P. Abbott et al., 2017 GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence https://doi.org/10.1103/PhysRevLett.119.141101 Phys. Rev. Lett.119 141101 [1709.09660] · doi:10.1103/PhysRevLett.119.141101
[10] Virgo and LIGO Scientific collaborations, B. Abbott et al., 2017 GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral https://doi.org/10.1103/PhysRevLett.119.161101 Phys. Rev. Lett.119 161101 [1710.05832] · doi:10.1103/PhysRevLett.119.161101
[11] E. Berti et al., 2015 Testing General Relativity with Present and Future Astrophysical Observations https://doi.org/10.1088/0264-9381/32/24/243001 Class. Quant. Grav.32 243001 [1501.07274] · doi:10.1088/0264-9381/32/24/243001
[12] A. Joyce, B. Jain, J. Khoury and M. Trodden, 2015 Beyond the Cosmological Standard Model https://doi.org/10.1016/j.physrep.2014.12.002 Phys. Rept.568 1 [1407.0059] · doi:10.1016/j.physrep.2014.12.002
[13] G.W. Horndeski, 1974 Second-order scalar-tensor field equations in a four-dimensional space https://doi.org/10.1007/BF01807638 Int. J. Theor. Phys.10 363 · doi:10.1007/BF01807638
[14] C. Deffayet, G. Esposito-Farese and A. Vikman, 2009 Covariant Galileon https://doi.org/10.1103/PhysRevD.79.084003 Phys. Rev. D 79 084003 [0901.1314] · doi:10.1103/PhysRevD.79.084003
[15] C. Deffayet, S. Deser and G. Esposito-Farese, 2009 Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors https://doi.org/10.1103/PhysRevD.80.064015 Phys. Rev. D 80 064015 [0906.1967] · doi:10.1103/PhysRevD.80.064015
[16] C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, 2010 Imperfect Dark Energy from Kinetic Gravity Braiding J. Cosmol. Astropart. Phys.2010 10 026 [1008.0048]
[17] C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, 2011 From k-essence to generalised Galileons https://doi.org/10.1103/PhysRevD.84.064039 Phys. Rev. D 84 064039 [1103.3260] · doi:10.1103/PhysRevD.84.064039
[18] C. de Rham and L. Heisenberg, 2011 Cosmology of the Galileon from Massive Gravity https://doi.org/10.1103/PhysRevD.84.043503 Phys. Rev. D 84 043503 [1106.3312] · doi:10.1103/PhysRevD.84.043503
[19] M. Zumalacárregui and J. García-Bellido, 2014 Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian https://doi.org/10.1103/PhysRevD.89.064046 Phys. Rev. D 89 064046 [1308.4685] · doi:10.1103/PhysRevD.89.064046
[20] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, 2015 Healthy theories beyond Horndeski https://doi.org/10.1103/PhysRevLett.114.211101 Phys. Rev. Lett.114 211101 [1404.6495] · doi:10.1103/PhysRevLett.114.211101
[21] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, 2015 Exploring gravitational theories beyond Horndeski J. Cosmol. Astropart. Phys.2015 02 018 [1408.1952]
[22] G. Gubitosi, F. Piazza and F. Vernizzi, 2013 The Effective Field Theory of Dark Energy J. Cosmol. Astropart. Phys.2013 02 032 [1210.0201]
[23] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, 2013 Essential Building Blocks of Dark Energy J. Cosmol. Astropart. Phys.2013 08 025 [1304.4840]
[24] F. Piazza and F. Vernizzi, 2013 Effective Field Theory of Cosmological Perturbations https://doi.org/10.1088/0264-9381/30/21/214007 Class. Quant. Grav.30 214007 [1307.4350] · Zbl 1277.83009 · doi:10.1088/0264-9381/30/21/214007
[25] L. Perenon, C. Marinoni and F. Piazza, 2017 Diagnostic of Horndeski Theories J. Cosmol. Astropart. Phys.2017 01 035 [1609.09197] · Zbl 1515.83244
[26] L. Perenon, F. Piazza, C. Marinoni and L. Hui, 2015 Phenomenology of dark energy: general features of large-scale perturbations J. Cosmol. Astropart. Phys.2015 11 029 [1506.03047]
[27] L. Lombriser and N.A. Lima, 2017 Challenges to Self-Acceleration in Modified Gravity from Gravitational Waves and Large-Scale Structure https://doi.org/10.1016/j.physletb.2016.12.048 Phys. Lett. B 765 382 [1602.07670] · Zbl 1369.83078 · doi:10.1016/j.physletb.2016.12.048
[28] J.M. Ezquiaga and M. Zumalacárregui, 2017 Dark Energy After GW170817: Dead Ends and the Road Ahead https://doi.org/10.1103/PhysRevLett.119.251304 Phys. Rev. Lett.119 251304 [1710.05901] · doi:10.1103/PhysRevLett.119.251304
[29] P. Creminelli and F. Vernizzi, 2017 Dark Energy after GW170817 and GRB170817A https://doi.org/10.1103/PhysRevLett.119.251302 Phys. Rev. Lett.119 251302 [1710.05877] · doi:10.1103/PhysRevLett.119.251302
[30] J. Sakstein and B. Jain, 2017 Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories https://doi.org/10.1103/PhysRevLett.119.251303 Phys. Rev. Lett.119 251303 [1710.05893] · doi:10.1103/PhysRevLett.119.251303
[31] T. Baker, E. Bellini, P.G. Ferreira, M. Lagos, J. Noller and I. Sawicki, 2017 Strong constraints on cosmological gravity from GW170817 and GRB 170817A https://doi.org/10.1103/PhysRevLett.119.251301 Phys. Rev. Lett.119 251301 [1710.06394] · doi:10.1103/PhysRevLett.119.251301
[32] D. Langlois, R. Saito, D. Yamauchi and K. Noui, 2018 Scalar-tensor theories and modified gravity in the wake of GW170817 https://doi.org/10.1103/PhysRevD.97.061501 Phys. Rev. D 97 061501 [1711.07403] · doi:10.1103/PhysRevD.97.061501
[33] D. Bettoni, J.M. Ezquiaga, K. Hinterbichler and M. Zumalacárregui, 2017 Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity, https://doi.org/10.1103/PhysRevD.95.084029 Phys. Rev. D 95 084029 [1608.01982] · doi:10.1103/PhysRevD.95.084029
[34] R.A. Battye, F. Pace and D. Trinh, 2018 Gravitational wave constraints on dark sector models https://doi.org/10.1103/PhysRevD.98.023504 Phys. Rev. D 98 023504 [1802.09447] · doi:10.1103/PhysRevD.98.023504
[35] L. Amendola, D. Bettoni, G. Domènech and A.R. Gomes, 2018 Doppelgänger dark energy: modified gravity with non-universal couplings after GW170817 J. Cosmol. Astropart. Phys.2018 06 029 [1803.06368] · Zbl 1527.83073
[36] M. Crisostomi and K. Koyama, 2018 Vainshtein mechanism after GW170817 https://doi.org/10.1103/PhysRevD.97.021301 Phys. Rev. D 97 021301 [1711.06661] · doi:10.1103/PhysRevD.97.021301
[37] E. Allys, P. Peter and Y. Rodriguez, 2016 Generalized SU(2) Proca Theory https://doi.org/10.1103/PhysRevD.94.084041 Phys. Rev. D 94 084041 [1609.05870] · doi:10.1103/PhysRevD.94.084041
[38] J. Beltran Jimenez and L. Heisenberg, 2017 Generalized multi-Proca fields https://doi.org/10.1016/j.physletb.2017.03.002 Phys. Lett. B 770 16 [1610.08960] · Zbl 1403.81037 · doi:10.1016/j.physletb.2017.03.002
[39] G.W. Horndeski, 1976 Conservation of Charge and the Einstein-Maxwell Field Equations https://doi.org/10.1063/1.522837 J. Math. Phys.17 1980 · doi:10.1063/1.522837
[40] J.D. Barrow, M. Thorsrud and K. Yamamoto, 2013 Cosmologies in Horndeski’s second-order vector-tensor theory J. High Energy Phys. JHEP02(2013)146 [1211.5403] · Zbl 1342.83519 · doi:10.1007/JHEP02(2013)146
[41] J. Beltran Jimenez, R. Durrer, L. Heisenberg and M. Thorsrud, 2013 Stability of Horndeski vector-tensor interactions J. Cosmol. Astropart. Phys.2013 10 064 [1308.1867]
[42] J. Beltran Jimenez and T.S. Koivisto, 2014 Extended Gauss-Bonnet gravities in Weyl geometry https://doi.org/10.1088/0264-9381/31/13/135002 Class. Quant. Grav.31 135002 [1402.1846] · Zbl 1297.83037 · doi:10.1088/0264-9381/31/13/135002
[43] J. Beltran Jimenez and T.S. Koivisto, 2016 Spacetimes with vector distortion: Inflation from generalised Weyl geometry https://doi.org/10.1016/j.physletb.2016.03.047 Phys. Lett. B 756 400 [1509.02476] · Zbl 1400.83042 · doi:10.1016/j.physletb.2016.03.047
[44] J. Beltran Jimenez, L. Heisenberg and T.S. Koivisto, 2016 Cosmology for quadratic gravity in generalized Weyl geometry J. Cosmol. Astropart. Phys.2016 04 046 [1602.07287]
[45] A. De Felice, L. Heisenberg, R. Kase, S. Mukohyama, S. Tsujikawa and Y.-l. Zhang, 2016 Cosmology in generalized Proca theories J. Cosmol. Astropart. Phys.2016 06 048 [1603.05806]
[46] A. De Felice, L. Heisenberg, R. Kase, S. Mukohyama, S. Tsujikawa and Y.-l. Zhang, 2016 Effective gravitational couplings for cosmological perturbations in generalized Proca theories https://doi.org/10.1103/PhysRevD.94.044024 Phys. Rev. D 94 044024 [1605.05066] · doi:10.1103/PhysRevD.94.044024
[47] A. de Felice, L. Heisenberg and S. Tsujikawa, 2017 Observational constraints on generalized Proca theories https://doi.org/10.1103/PhysRevD.95.123540 Phys. Rev. D 95 123540 [1703.09573] · doi:10.1103/PhysRevD.95.123540
[48] T. Delsate and J. Steinhoff, 2012 New insights on the matter-gravity coupling paradigm https://doi.org/10.1103/PhysRevLett.109.021101 Phys. Rev. Lett.109 021101 [1201.4989] · doi:10.1103/PhysRevLett.109.021101
[49] P. Pani, T.P. Sotiriou and D. Vernieri, 2013 Gravity with Auxiliary Fields https://doi.org/10.1103/PhysRevD.88.121502 Phys. Rev. D 88 121502 [1306.1835] · doi:10.1103/PhysRevD.88.121502
[50] J. Beltran Jimenez, L. Heisenberg, G.J. Olmo and C. Ringeval, 2015 Cascading dust inflation in Born-Infeld gravity J. Cosmol. Astropart. Phys.2015 11 046 [1509.01188]
[51] V.I. Afonso, C. Bejarano, J. Beltran Jimenez, G.J. Olmo and E. Orazi, 2017 The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields https://doi.org/10.1088/1361-6382/aa9151 Class. Quant. Grav.34 235003 [1705.03806] · Zbl 1381.83091 · doi:10.1088/1361-6382/aa9151
[52] I.D. Saltas, I. Sawicki, L. Amendola and M. Kunz, 2014 Anisotropic Stress as a Signature of Nonstandard Propagation of Gravitational Waves https://doi.org/10.1103/PhysRevLett.113.191101 Phys. Rev. Lett.113 191101 [1406.7139] · doi:10.1103/PhysRevLett.113.191101
[53] I. Sawicki, I.D. Saltas, M. Motta, L. Amendola and M. Kunz, 2017 Nonstandard gravitational waves imply gravitational slip: On the difficulty of partially hiding new gravitational degrees of freedom https://doi.org/10.1103/PhysRevD.95.083520 Phys. Rev. D 95 083520 [1612.02002] · doi:10.1103/PhysRevD.95.083520
[54] L. Amendola, M. Kunz, I.D. Saltas and I. Sawicki, 2018 Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A https://doi.org/10.1103/PhysRevLett.120.131101 Phys. Rev. Lett.120 131101 [1711.04825] · doi:10.1103/PhysRevLett.120.131101
[55] J. Beltran Jimenez, A.L. Delvas Froes and D.F. Mota, 2013 Screening Vector Field Modifications of General Relativity https://doi.org/10.1016/j.physletb.2013.07.032 Phys. Lett. B 725 212 [1212.1923] · Zbl 1364.83029 · doi:10.1016/j.physletb.2013.07.032
[56] J. Beltrán Jiménez, J.A.R. Cembranos and J.M. Sánchez Velázquez, 2018 On scalar and vector fields coupled to the energy-momentum tensor J. High Energy Phys. JHEP05(2018)100 [1803.05832] · Zbl 1391.83094 · doi:10.1007/JHEP05(2018)100
[57] L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, 2009 Dark Matter and Dark Radiation https://doi.org/10.1103/PhysRevD.79.023519 Phys. Rev. D 79 023519 [0810.5126] · doi:10.1103/PhysRevD.79.023519
[58] J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, 2009 Hidden Charged Dark Matter J. Cosmol. Astropart. Phys.2009 07 004 [0905.3039]
[59] M. Duerr, K. Schmidt-Hoberg and S. Wild, Self-interacting dark matter with a stable vector mediator, [1804.10385]
[60] J. Cervero and L. Jacobs, 1978 Classical Yang-Mills Fields in a Robertson-walker Universe https://doi.org/10.1016/0370-2693(78)90477-X Phys. Lett. B 78 427 · doi:10.1016/0370-2693(78)90477-X
[61] D.V. Galtsov and M.S. Volkov, 1991 Yang-Mills cosmology: Cold matter for a hot universe https://doi.org/10.1016/0370-2693(91)90211-8 Phys. Lett. B 256 17 · doi:10.1016/0370-2693(91)90211-8
[62] B.K. Darian and H.P. Kunzle, 1997 Cosmological Einstein Yang-Mills equations https://doi.org/10.1063/1.532116 J. Math. Phys.38 4696 [gr-qc/9610026] · Zbl 0888.53070 · doi:10.1063/1.532116
[63] A. Maleknejad and M.M. Sheikh-Jabbari, 2013 Gauge-flation: Inflation From Non-Abelian Gauge Fields https://doi.org/10.1016/j.physletb.2013.05.001 Phys. Lett. B 723 224 [1102.1513] · Zbl 1311.70035 · doi:10.1016/j.physletb.2013.05.001
[64] A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, 2013 Gauge Fields and Inflation https://doi.org/10.1016/j.physrep.2013.03.003 Phys. Rept.528 161 [1212.2921] · Zbl 1297.83055 · doi:10.1016/j.physrep.2013.03.003
[65] E. Davydov and D. Gal’tsov, 2016 HYM-flation: Yang-Mills cosmology with Horndeski coupling https://doi.org/10.1016/j.physletb.2015.12.070 Phys. Lett. B 753 622 [1512.02164] · Zbl 1367.83104 · doi:10.1016/j.physletb.2015.12.070
[66] J. Beltran Jimenez, L. Heisenberg, R. Kase, R. Namba and S. Tsujikawa, 2017 Instabilities in Horndeski Yang-Mills inflation https://doi.org/10.1103/PhysRevD.95.063533 Phys. Rev. D 95 063533 [1702.01193] · doi:10.1103/PhysRevD.95.063533
[67] W. Zhao and Y. Zhang, 2006 The state equation of the Yang-Mills field dark energy models https://doi.org/10.1088/0264-9381/23/10/011 Class. Quant. Grav.23 3405 [astro-ph/0510356] · Zbl 1096.83082 · doi:10.1088/0264-9381/23/10/011
[68] D.V. Gal’tsov, 2008 Non-Abelian condensates as alternative for dark energy, in Proceedings, 43rd Rencontres de Moriond on QCD and high energy interactions, La Thuile, Italy, March 8-15, 2008 [0901.0115]
[69] A. Mehrabi, A. Maleknejad and V. Kamali, 2017 Gaugessence: a dark energy model with early time radiation-like equation of state https://doi.org/10.1007/s10509-017-3033-z Astrophys. Space Sci.362 53 [1510.00838] · doi:10.1007/s10509-017-3033-z
[70] M. Rinaldi, 2015 Dark energy as a fixed point of the Einstein Yang-Mills Higgs Equations J. Cosmol. Astropart. Phys.2015 10 023 [1508.04576]
[71] K. Bamba, S. Nojiri and S.D. Odintsov, 2008 Inflationary cosmology and the late-time accelerated expansion of the universe in non-minimal Yang-Mills-F(R) gravity and non-minimal vector-F(R) gravity https://doi.org/10.1103/PhysRevD.77.123532 Phys. Rev. D 77 123532 [0803.3384] · doi:10.1103/PhysRevD.77.123532
[72] C. Armendariz-Picon, 2004 Could dark energy be vector-like? J. Cosmol. Astropart. Phys.2004 07 007 [astro-ph/0405267]
[73] H. Wei and R.-G. Cai, 2006 Interacting vector-like dark energy, the first and second cosmological coincidence problems https://doi.org/10.1103/PhysRevD.73.083002 Phys. Rev. D 73 083002 [astro-ph/0603052] · doi:10.1103/PhysRevD.73.083002
[74] A. Golovnev, V. Mukhanov and V. Vanchurin, 2008 Vector Inflation J. Cosmol. Astropart. Phys.2008 06 009 [0802.2068]
[75] C.M. Nieto and Y. Rodriguez, 2016 Massive Gauge-flation https://doi.org/10.1142/S0217732316400058 Mod. Phys. Lett. A 31 1640005 [1602.07197] · Zbl 1344.83061 · doi:10.1142/S0217732316400058
[76] L. Heisenberg, 2014 Generalization of the Proca Action J. Cosmol. Astropart. Phys.2014 05 015 [1402.7026]
[77] E. Allys, P. Peter and Y. Rodriguez, 2016 Generalized Proca action for an Abelian vector field J. Cosmol. Astropart. Phys.2016 02 004 [1511.03101]
[78] J. Beltran Jimenez and L. Heisenberg, 2016 Derivative self-interactions for a massive vector field https://doi.org/10.1016/j.physletb.2016.04.017 Phys. Lett. B 757 405 [1602.03410] · Zbl 1360.83046 · doi:10.1016/j.physletb.2016.04.017
[79] L. Heisenberg, R. Kase and S. Tsujikawa, 2016 Beyond generalized Proca theories https://doi.org/10.1016/j.physletb.2016.07.052 Phys. Lett. B 760 617 [1605.05565] · Zbl 1398.83077 · doi:10.1016/j.physletb.2016.07.052
[80] R. Kimura, A. Naruko and D. Yoshida, 2017 Extended vector-tensor theories J. Cosmol. Astropart. Phys.2017 01 002 [1608.07066] · Zbl 1515.83226
[81] Y. Rodríguez and A.A. Navarro, 2018 Non-Abelian S-term dark energy and inflation https://doi.org/10.1016/j.dark.2018.01.003 Phys. Dark Univ.19 129 [1711.01935] · doi:10.1016/j.dark.2018.01.003
[82] R.R. Caldwell, C. Devulder and N.A. Maksimova, 2016 Gravitational wave-Gauge field oscillations https://doi.org/10.1103/PhysRevD.94.063005 Phys. Rev. D 94 063005 [1604.08939] · doi:10.1103/PhysRevD.94.063005
[83] R.R. Caldwell, C. Devulder and N.A. Maksimova, 2017 Gravitational wave-gauge field dynamics https://doi.org/10.1142/S0218271817420056 Int. J. Mod. Phys. D 26 1742005 [1706.00431] · Zbl 1431.83037 · doi:10.1142/S0218271817420056
[84] K. Max, M. Platscher and J. Smirnov, 2017 Gravitational Wave Oscillations in Bigravity https://doi.org/10.1103/PhysRevLett.119.111101 Phys. Rev. Lett.119 111101 [1703.07785] · doi:10.1103/PhysRevLett.119.111101
[85] T. Narikawa, K. Ueno, H. Tagoshi, T. Tanaka, N. Kanda and T. Nakamura, 2015 Detectability of bigravity with graviton oscillations using gravitational wave observations https://doi.org/10.1103/PhysRevD.91.062007 Phys. Rev. D 91 062007 [1412.8074] · doi:10.1103/PhysRevD.91.062007
[86] R.R. Caldwell and C. Devulder, Gravitational Wave Opacity from Gauge Field Dark Energy, [1802.07371]
[87] F. Piazza, D. Pirtskhalava, R. Rattazzi and O. Simon, 2017 Gaugid inflation J. Cosmol. Astropart. Phys.2017 11 041 [1706.03402] · Zbl 1515.83431
[88] R.M. Wald, 1986 Spin-2 Fields and General Covariance https://doi.org/10.1103/PhysRevD.33.3613 Phys. Rev. D 33 3613 · doi:10.1103/PhysRevD.33.3613
[89] A. Gruzinov, 2004 Elastic inflation https://doi.org/10.1103/PhysRevD.70.063518 Phys. Rev. D 70 063518 [astro-ph/0404548] · doi:10.1103/PhysRevD.70.063518
[90] C. Armendariz-Picon, 2007 Creating Statistically Anisotropic and Inhomogeneous Perturbations J. Cosmol. Astropart. Phys.2007 09 014 [0705.1167]
[91] S. Endlich, A. Nicolis and J. Wang, 2013 Solid Inflation J. Cosmol. Astropart. Phys.2013 10 011 [1210.0569]
[92] E. Babichev, C. Deffayet and R. Ziour, 2009 k-Mouflage gravity https://doi.org/10.1142/S0218271809016107 Int. J. Mod. Phys. D 18 2147 [0905.2943] · Zbl 1183.83081 · doi:10.1142/S0218271809016107
[93] E. Babichev, C. Deffayet and G. Esposito-Farese, 2011 Improving relativistic MOND with Galileon k-mouflage https://doi.org/10.1103/PhysRevD.84.061502 Phys. Rev. D 84 061502 [1106.2538] · doi:10.1103/PhysRevD.84.061502
[94] P. Brax, C. Burrage and A.-C. Davis, 2013 Screening fifth forces in k-essence and DBI models J. Cosmol. Astropart. Phys.2013 01 020 [1209.1293]
[95] C. Burrage and J. Khoury, 2014 Screening of scalar fields in Dirac-Born-Infeld theory https://doi.org/10.1103/PhysRevD.90.024001 Phys. Rev. D 90 024001 [1403.6120] · doi:10.1103/PhysRevD.90.024001
[96] T. Koivisto and D.F. Mota, 2008 Accelerating Cosmologies with an Anisotropic Equation of State https://doi.org/10.1086/587451 Astrophys. J.679 1 [0707.0279] · doi:10.1086/587451
[97] T. Koivisto and D.F. Mota, 2008 Anisotropic Dark Energy: Dynamics of Background and Perturbations J. Cosmol. Astropart. Phys.2008 06 018 [0801.3676]
[98] S.A. Appleby and E.V. Linder, 2013 Probing dark energy anisotropy https://doi.org/10.1103/PhysRevD.87.023532 Phys. Rev. D 87 023532 [1210.8221] · doi:10.1103/PhysRevD.87.023532
[99] L. Campanelli, P. Cea and L. Tedesco, 2006 Ellipsoidal Universe Can Solve The CMB Quadrupole Problem https://doi.org/10.1103/PhysRevLett.97.131302 Phys. Rev. Lett.97 131302 [Erratum ibid 97 (2006) 209903] [astro-ph/0606266] · doi:10.1103/PhysRevLett.97.131302
[100] A.L. Maroto, 2006 Moving dark energy and the CMB dipole J. Cosmol. Astropart. Phys.2006 05 015 [astro-ph/0512464]
[101] J. Beltran Jimenez and A.L. Maroto, 2007 Cosmology with moving dark energy and the CMB quadrupole https://doi.org/10.1103/PhysRevD.76.023003 Phys. Rev. D 76 023003 [astro-ph/0703483] · doi:10.1103/PhysRevD.76.023003
[102] C. García-García, A.L. Maroto and P. Martín-Moruno, 2016 Cosmology with moving bimetric fluids J. Cosmol. Astropart. Phys.2016 12 022 [1608.06493]
[103] T. Koivisto and D.F. Mota, 2008 Vector Field Models of Inflation and Dark Energy J. Cosmol. Astropart. Phys.2008 08 021 [0805.4229]
[104] J. Beltran Jimenez and A.L. Maroto, 2009 Cosmological evolution in vector-tensor theories of gravity https://doi.org/10.1103/PhysRevD.80.063512 Phys. Rev. D 80 063512 [0905.1245] · doi:10.1103/PhysRevD.80.063512
[105] L. Heisenberg, R. Kase and S. Tsujikawa, 2016 Anisotropic cosmological solutions in massive vector theories J. Cosmol. Astropart. Phys.2016 11 008 [1607.03175]
[106] J.A.R. Cembranos, C. Hallabrin, A.L. Maroto and S.J.N. Jareno, 2012 Isotropy theorem for cosmological vector fields https://doi.org/10.1103/PhysRevD.86.021301 Phys. Rev. D 86 021301 [1203.6221] · doi:10.1103/PhysRevD.86.021301
[107] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, 2013 Isotropy theorem for cosmological Yang-Mills theories https://doi.org/10.1103/PhysRevD.87.043523 Phys. Rev. D 87 043523 [1212.3201] · doi:10.1103/PhysRevD.87.043523
[108] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, 2014 Isotropy theorem for arbitrary-spin cosmological fields J. Cosmol. Astropart. Phys.2014 03 042 [1311.1402]
[109] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, 2017 Perturbations of ultralight vector field dark matter J. High Energy Phys. JHEP02(2017)064 [1611.03793] · Zbl 1377.83151 · doi:10.1007/JHEP02(2017)064
[110] L. Heisenberg, Scalar-Vector-Tensor Gravity Theories, [1801.01523]
[111] L. Heisenberg, R. Kase and S. Tsujikawa, 2018 Cosmology in scalar-vector-tensor theories https://doi.org/10.1103/PhysRevD.98.024038 Phys. Rev. D 98 024038 [1805.01066] · doi:10.1103/PhysRevD.98.024038
[112] L. Heisenberg and S. Tsujikawa, 2018 Dark energy survivals in massive gravity after GW170817: SO(3) invariant J. Cosmol. Astropart. Phys.2018 01 044 [1711.09430] · Zbl 1527.83143
[113] A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, 2015 Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff J. High Energy Phys. JHEP06(2015)155 [1501.03845] · Zbl 1388.83042 · doi:10.1007/JHEP06(2015)155
[114] G. Ballesteros, D. Comelli and L. Pilo, 2016 Massive and modified gravity as self-gravitating media https://doi.org/10.1103/PhysRevD.94.124023 Phys. Rev. D 94 124023 [1603.02956] · doi:10.1103/PhysRevD.94.124023
[115] M. Celoria, D. Comelli and L. Pilo, 2017 Fluids, Superfluids and Supersolids: Dynamics and Cosmology of Self Gravitating Media J. Cosmol. Astropart. Phys.2017 09 036 [1704.00322] · Zbl 1515.83104
[116] S. Weinberg, 2003 Adiabatic modes in cosmology https://doi.org/10.1103/PhysRevD.67.123504 Phys. Rev. D 67 123504 [astro-ph/0302326] · doi:10.1103/PhysRevD.67.123504
[117] K. Hinterbichler, L. Hui and J. Khoury, 2012 Conformal Symmetries of Adiabatic Modes in Cosmology J. Cosmol. Astropart. Phys.2012 08 017 [1203.6351]
[118] K. Hinterbichler, L. Hui and J. Khoury, 2014 An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology J. Cosmol. Astropart. Phys.2014 01 039 [1304.5527]
[119] B. Finelli, G. Goon, E. Pajer and L. Santoni, 2018 The Effective Theory of Shift-Symmetric Cosmologies J. Cosmol. Astropart. Phys.2018 05 060 [1802.01580] · Zbl 1536.83171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.