×

Perturbations of ultralight vector field dark matter. (English) Zbl 1377.83151

Summary: We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with \( {k}^2\ll \mathcal{H}ma \), we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with \( {k}^2\gg \mathcal{H}ma \), we get a wave-like behaviour in which the sound speed is non-vanishing and of order \(c_{s}^{2} \simeq k^{2}/m^{2}a^2\). This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order \((\Phi - \Psi)/\Phi \sim c_s^2\). Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also \(h/\Phi \sim c_s^2\). This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C35 Gravitational waves

References:

[1] SDSS collaboration, M. Tegmark et al., Cosmological Constraints from the SDSS Luminous Red Galaxies, Phys. Rev.D 74 (2006) 123507 [astro-ph/0608632] [INSPIRE]. · Zbl 1388.83899
[2] J.F. Navarro, V.R. Eke and C.S. Frenk, The cores of dwarf galaxy halos, Mon. Not. Roy. Astron. Soc.283 (1996) L72 [astro-ph/9610187] [INSPIRE]. · Zbl 1388.83899
[3] J.F. Navarro, C.S. Frenk and S.D.M. White, A Universal density profile from hierarchical clustering, Astrophys. J.490 (1997) 493 [astro-ph/9611107] [INSPIRE].
[4] B. Moore, Evidence against dissipationless dark matter from observations of galaxy haloes, Nature370 (1994) 629 [INSPIRE]. · doi:10.1038/370629a0
[5] A.A. Klypin, A.V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing Galactic satellites?, Astrophys. J.522 (1999) 82 [astro-ph/9901240] [INSPIRE].
[6] B. Moore et al., Dark matter substructure within galactic halos, Astrophys. J.524 (1999) L19 [astro-ph/9907411] [INSPIRE].
[7] M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc.415 (2011) L40 [arXiv:1103.0007] [INSPIRE]. · doi:10.1111/j.1745-3933.2011.01074.x
[8] J.I. Read and G. Gilmore, Mass loss from dwarf spheroidal galaxies: The Origins of shallow dark matter cores and exponential surface brightness profiles, Mon. Not. Roy. Astron. Soc.356 (2005) 107 [astro-ph/0409565] [INSPIRE].
[9] J. Sommer-Larsen and A. Dolgov, Formation of disk galaxies: warm dark matter and the angular momentum problem, Astrophys. J.551 (2001) 608 [astro-ph/9912166] [INSPIRE].
[10] D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett.84 (2000) 3760 [astro-ph/9909386] [INSPIRE].
[11] J.A.R. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP solutions to small scale structure problems, Phys. Rev. Lett.95 (2005) 181301 [hep-ph/0507150] [INSPIRE].
[12] M. Kaplinghat, Dark matter from early decays, Phys. Rev.D 72 (2005) 063510 [astro-ph/0507300] [INSPIRE].
[13] M.G. Baring, T. Ghosh, F.S. Queiroz and K. Sinha, New Limits on the Dark Matter Lifetime from Dwarf Spheroidal Galaxies using Fermi-LAT, Phys. Rev.D 93 (2016) 103009 [arXiv:1510.00389] [INSPIRE].
[14] S.-J. Sin, Late time cosmological phase transition and galactic halo as Bose liquid, Phys. Rev.D 50 (1994) 3650 [hep-ph/9205208] [INSPIRE].
[15] S.U. Ji and S.J. Sin, Late time phase transition and the galactic halo as a bose liquid: 2. The Effect of visible matter, Phys. Rev.D 50 (1994) 3655 [hep-ph/9409267] [INSPIRE].
[16] J.-w. Lee and I.-g. Koh, Galactic halos as boson stars, Phys. Rev.D 53 (1996) 2236 [hep-ph/9507385] [INSPIRE].
[17] W. Hu, Structure formation with generalized dark matter, Astrophys. J.506 (1998) 485 [astro-ph/9801234] [INSPIRE].
[18] F. Ferrer and J.A. Grifols, Bose-Einstein condensation, dark matter and acoustic peaks, JCAP12 (2004) 012 [astro-ph/0407532] [INSPIRE].
[19] C.G. Böhmer and T. Harko, Can dark matter be a Bose-Einstein condensate?, JCAP06 (2007) 025 [arXiv:0705.4158] [INSPIRE]. · doi:10.1088/1475-7516/2007/06/025
[20] L.A. Urena-López, Bose-Einstein condensation of relativistic Scalar Field Dark Matter, JCAP01 (2009) 014 [arXiv:0806.3093] [INSPIRE]. · doi:10.1088/1475-7516/2009/01/014
[21] J.-W. Lee, Is dark matter a BEC or scalar field?, J. Korean Phys. Soc.54 (2009) 2622 [arXiv:0801.1442]. · doi:10.3938/jkps.54.2622
[22] J.-W. Lee and S. Lim, Minimum mass of galaxies from BEC or scalar field dark matter, JCAP01 (2010) 007 [arXiv:0812.1342] [INSPIRE]. · doi:10.1088/1475-7516/2010/01/007
[23] A.P. Lundgren, M. Bondarescu, R. Bondarescu and J. Balakrishna, Luke-warm dark matter: Bose-condensation of ultra-light particles, Astrophys. J.715 (2010) L35 [arXiv:1001.0051] [INSPIRE]. · doi:10.1088/2041-8205/715/1/L35
[24] I. Rodríguez-Montoya, J. Magaña, T. Matos and A. Pérez-Lorenzana, Ultra light bosonic dark matter and cosmic microwave background, Astrophys. J.721 (2010) 1509 [arXiv:0908.0054] [INSPIRE]. · doi:10.1088/0004-637X/721/2/1509
[25] T. Harko, Cosmological dynamics of dark matter Bose-Einstein Condensation, Phys. Rev.D 83 (2011) 123515 [arXiv:1105.5189] [INSPIRE].
[26] T. Harko, Bose-Einstein condensation of dark matter solves the core/cusp problem, JCAP05 (2011) 022 [arXiv:1105.2996] [INSPIRE]. · doi:10.1088/1475-7516/2011/05/022
[27] P.-H. Chavanis, Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: I. Analytical results, Phys. Rev.D 84 (2011) 043531 [arXiv:1103.2050] [INSPIRE].
[28] P.H. Chavanis and L. Delfini, Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results, Phys. Rev.D 84 (2011) 043532 [arXiv:1103.2054] [INSPIRE].
[29] V. Lora, J. Magaña, A. Bernal, F.J. Sánchez-Salcedo and E.K. Grebel, On the mass of ultra-light bosonic dark matter from galactic dynamics, JCAP02 (2012) 011 [arXiv:1110.2684] [INSPIRE]. · doi:10.1088/1475-7516/2012/02/011
[30] P.J.E. Peebles and A. Vilenkin, Noninteracting dark matter, Phys. Rev.D 60 (1999) 103506 [astro-ph/9904396] [INSPIRE].
[31] P.J.E. Peebles, Fluid dark matter, Astrophys. J.534 (2000) L127 [astro-ph/0002495] [INSPIRE].
[32] T. Matos, F.S. Guzman and L.A. Urena-López, Scalar field as dark matter in the universe, Class. Quant. Grav.17 (2000) 1707 [astro-ph/9908152] [INSPIRE]. · Zbl 0949.83075
[33] A. Arbey, J. Lesgourgues and P. Salati, Quintessential haloes around galaxies, Phys. Rev.D 64 (2001) 123528 [astro-ph/0105564] [INSPIRE].
[34] J. Magaña and T. Matos, A brief Review of the Scalar Field Dark Matter model, J. Phys. Conf. Ser.378 (2012) 012012 [arXiv:1201.6107] [INSPIRE]. · doi:10.1088/1742-6596/378/1/012012
[35] T. Matos and L.A. Ureña-López, Quintessence and scalar dark matter in the universe, Class. Quant. Grav.17 (2000) L75 [astro-ph/0004332] [INSPIRE].
[36] T. Matos and L.A. Ureña-López, A Further analysis of a cosmological model of quintessence and scalar dark matter, Phys. Rev.D 63 (2001) 063506 [astro-ph/0006024] [INSPIRE].
[37] T. Matos, J.-R. Luévano, I. Quiros, L.A. Ureña-López and J.A. Vázquez, Dynamics of Scalar Field Dark Matter With a Cosh-like Potential, Phys. Rev.D 80 (2009) 123521 [arXiv:0906.0396] [INSPIRE].
[38] A. Suárez and T. Matos, Structure Formation with Scalar Field Dark Matter: The Fluid Approach, Mon. Not. Roy. Astron. Soc.416 (2011) 87 [arXiv:1101.4039] [INSPIRE].
[39] J. Magaña, T. Matos, A. Suárez and F.J. Sánchez-Salcedo, Structure formation with scalar field dark matter: the field approach, JCAP10 (2012) 003 [arXiv:1204.5255] [INSPIRE]. · doi:10.1088/1475-7516/2012/10/003
[40] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
[41] P. Svrček and E. Witten, Axions In String Theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE]. · doi:10.1088/1126-6708/2006/06/051
[42] M.S. Turner, Coherent scalar-field oscillations in an expanding universe, Phys. Rev.D 28 (1983) 6.
[43] R. Hlozek, D. Grin, D.J.E. Marsh and P.G. Ferreira, A search for ultralight axions using precision cosmological data, Phys. Rev.D 91 (2015) 103512 [arXiv:1410.2896] [INSPIRE].
[44] D.J.E. Marsh and P.G. Ferreira, Ultra-Light Scalar Fields and the Growth of Structure in the Universe, Phys. Rev.D 82 (2010) 103528 [arXiv:1009.3501] [INSPIRE].
[45] H.-Y. Schive et al., Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations, Phys. Rev. Lett.113 (2014) 261302 [arXiv:1407.7762] [INSPIRE]. · doi:10.1103/PhysRevLett.113.261302
[46] H.-Y. Schive, T. Chiueh and T. Broadhurst, Cosmic Structure as the Quantum Interference of a Coherent Dark Wave, Nature Phys.10 (2014) 496 [arXiv:1406.6586] [INSPIRE]. · doi:10.1038/nphys2996
[47] L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, On the hypothesis that cosmological dark matter is composed of ultra-light bosons, arXiv:1610.08297 [INSPIRE].
[48] B. Ratra, Expressions for linearized perturbations in a massive scalar field dominated cosmological model, Phys. Rev.D 44 (1991) 352 [INSPIRE].
[49] J.-c. Hwang, Roles of a coherent scalar field on the evolution of cosmic structures, Phys. Lett.B 401 (1997) 241 [astro-ph/9610042] [INSPIRE].
[50] J.-c. Hwang and H. Noh, Axion as a Cold Dark Matter candidate, Phys. Lett.B 680 (2009) 1 [arXiv:0902.4738] [INSPIRE]. · doi:10.1016/j.physletb.2009.08.031
[51] C.-G. Park, J.-c. Hwang and H. Noh, Axion as a cold dark matter candidate: low-mass case, Phys. Rev.D 86 (2012) 083535 [arXiv:1207.3124] [INSPIRE].
[52] J.-c. Hwang and H. Noh, Axion as a Cold Dark Matter candidate, Phys. Lett.B 680 (2009) 1 [arXiv:0902.4738] [INSPIRE]. · doi:10.1016/j.physletb.2009.08.031
[53] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Cosmological perturbations in coherent oscillating scalar field models, JHEP03 (2016) 013 [arXiv:1509.08819] [INSPIRE]. · Zbl 1388.83899 · doi:10.1007/JHEP03(2016)013
[54] K. Dimopoulos, Can a vector field be responsible for the curvature perturbation in the Universe?, Phys. Rev.D 74 (2006) 083502 [hep-ph/0607229] [INSPIRE].
[55] J.A.R. Cembranos, C. Hallabrin, A.L. Maroto and S.J. Núñez Jareño, Isotropy theorem for cosmological vector fields, Phys. Rev.D 86 (2012) 021301 [arXiv:1203.6221] [INSPIRE].
[56] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Isotropy theorem for cosmological Yang-Mills theories, Phys. Rev.D 87 (2013) 043523 [arXiv:1212.3201] [INSPIRE].
[57] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Isotropy theorem for arbitrary-spin cosmological fields, JCAP03 (2014) 042 [arXiv:1311.1402] [INSPIRE]. · doi:10.1088/1475-7516/2014/03/042
[58] C.G. Boehmer and T. Harko, Dark energy as a massive vector field, Eur. Phys. J.C 50 (2007) 423 [gr-qc/0701029] [INSPIRE].
[59] C. Armendariz-Picon, Could dark energy be vector-like?, JCAP07 (2004) 007 [astro-ph/0405267] [INSPIRE].
[60] D.V. Galtsov and M.S. Volkov, Yang-Mills cosmology: Cold matter for a hot universe, Phys. Lett.B 256 (1991) 17 [INSPIRE]. · doi:10.1016/0370-2693(91)90211-8
[61] D.V. Gal’tsov, Non-Abelian condensates as alternative for dark energy, arXiv:0901.0115 [INSPIRE].
[62] J. Beltran Jimenez and A.L. Maroto, A cosmic vector for dark energy, Phys. Rev.D 78 (2008) 063005 [arXiv:0801.1486] [INSPIRE].
[63] J. Beltran Jimenez and A.L. Maroto, Cosmological electromagnetic fields and dark energy, JCAP03 (2009) 016 [arXiv:0811.0566] [INSPIRE]. · doi:10.1088/1475-7516/2009/03/016
[64] T. Koivisto and D.F. Mota, Vector Field Models of Inflation and Dark Energy, JCAP08 (2008) 021 [arXiv:0805.4229] [INSPIRE]. · doi:10.1088/1475-7516/2008/08/021
[65] K. Bamba, S. Nojiri and S.D. Odintsov, Inflationary cosmology and the late-time accelerated expansion of the universe in non-minimal Yang-Mills-F(R) gravity and non-minimal vector-F(R) gravity, Phys. Rev.D 77 (2008) 123532 [arXiv:0803.3384] [INSPIRE].
[66] A.E. Nelson and J. Scholtz, Dark Light, Dark Matter and the Misalignment Mechanism, Phys. Rev.D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE].
[67] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy Cold Dark Matter, JCAP06 (2012) 013 [arXiv:1201.5902] [INSPIRE]. · doi:10.1088/1475-7516/2012/06/013
[68] S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology, JHEP07 (2008) 124 [arXiv:0803.1449] [INSPIRE]. · doi:10.1088/1126-6708/2008/07/124
[69] J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci.60 (2010) 405 [arXiv:1002.0329] [INSPIRE]. · doi:10.1146/annurev.nucl.012809.104433
[70] M. Schwarz et al., Results from the Solar Hidden Photon Search (SHIPS), JCAP08 (2015) 011 [arXiv:1502.04490] [INSPIRE]. · doi:10.1088/1475-7516/2015/08/011
[71] S. Dodelson, Modern Cosmology, Academic Press, New York U.S.A. (2003).
[72] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
[73] E. Fenu, D.G. Figueroa, R. Durrer and J. García-Bellido, Gravitational waves from self-ordering scalar fields, JCAP10 (2009) 005 [arXiv:0908.0425] [INSPIRE]. · doi:10.1088/1475-7516/2009/10/005
[74] C. Caprini and R. Durrer, Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields, Phys. Rev.D 74 (2006) 063521 [astro-ph/0603476] [INSPIRE].
[75] M. Maggiore, Gravitational wave experiments and early universe cosmology, Phys. Rept.331 (2000) 283 [gr-qc/9909001] [INSPIRE].
[76] C.J. Moore, R.H. Cole and C.P.L. Berry, Gravitational-wave sensitivity curves, Class. Quant. Grav.32 (2015) 015014 [arXiv:1408.0740] [INSPIRE]. · doi:10.1088/0264-9381/32/1/015014
[77] L. Pagano, L. Salvati and A. Melchiorri, New constraints on primordial gravitational waves from Planck 2015, Phys. Lett.B 760 (2016) 823 [arXiv:1508.02393] [INSPIRE]. · doi:10.1016/j.physletb.2016.07.078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.