×

Diagnostic of Horndeski theories. (English) Zbl 1515.83244


MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology

References:

[1] http://www.darkenergysurvey.org
[2] http://www.euclid-ec.org
[3] L. Amendola et al., Cosmology and Fundamental Physics with the Euclid Satellite, [1606.00180]
[4] L. Taddei, M. Martinelli and L. Amendola, 2016 Model-independent constraints on modified gravity from current data and from the Euclid and SKA future surveys J. Cosmol. Astropart. Phys.2016 12 032 [1604.01059]
[5] http://desi.lbl.gov/cdr/
[6] http://www.lsst.org/lsst/
[7] http://wfirst.gsfc.nasa.gov
[8] http://www.skatelescope.org
[9] P. Bull, 2016 Extending cosmological tests of General Relativity with the Square Kilometre Array, Astrophys. J.817 26 [1509.07562] · doi:10.3847/0004-637X/817/1/26
[10] S. Camera et al., Cosmology on the Largest Scales with the SKA, POS(AASKA14)025
[11] L. Pogosian, A. Silvestri, K. Koyama and G.-B. Zhao, 2010 How to optimally parametrize deviations from General Relativity in the evolution of cosmological perturbations?, Phys. Rev. D 81 104023 [1002.2382] · doi:10.1103/PhysRevD.81.104023
[12] Y.-S. Song, G.-B. Zhao, D. Bacon, K. Koyama, R.C. Nichol and L. Pogosian, 2011 Complementarity of Weak Lensing and Peculiar Velocity Measurements in Testing General Relativity, Phys. Rev. D 84 083523 [1011.2106] · doi:10.1103/PhysRevD.84.083523
[13] F. Simpson et al., 2013 CFHTLenS: Testing the Laws of Gravity with Tomographic Weak Lensing and Redshift Space Distortions, Mon. Not. Roy. Astron. Soc.429 2249 [1212.3339] · doi:10.1093/mnras/sts493
[14] G.W. Horndeski, 1974 Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys.10 363 · doi:10.1007/BF01807638
[15] C. Deffayet, S. Deser and G. Esposito-Farese, 2009 Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 064015 [0906.1967] · doi:10.1103/PhysRevD.80.064015
[16] F. Piazza, H. Steigerwald and C. Marinoni, 2014 Phenomenology of dark energy: exploring the space of theories with future redshift surveys J. Cosmol. Astropart. Phys.2014 05 043 [1312.6111]
[17] L. Perenon, F. Piazza, C. Marinoni and L. Hui, 2015 Phenomenology of dark energy: general features of large-scale perturbations J. Cosmol. Astropart. Phys.2015 11 029 [1506.03047]
[18] L. Perenon, General features of single-scalar field dark energy models, [1607.06916]
[19] Y.-S. Song, L. Hollenstein, G. Caldera-Cabral and K. Koyama, 2010 Theoretical Priors On Modified Growth Parametrisations J. Cosmol. Astropart. Phys.2010 04 018 [1001.0969]
[20] L. Pogosian and A. Silvestri, 2016 What can cosmology tell us about gravity? Constraining Horndeski gravity with Σ and μ, Phys. Rev. D 94 104014 [1606.05339] · doi:10.1103/PhysRevD.94.104014
[21] C. Wetterich, 1988 Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys. B 302 668 · doi:10.1016/0550-3213(88)90193-9
[22] B. Ratra and P.J.E. Peebles, 1988 Cosmological Consequences of a Rolling Homogeneous Scalar Field, Phys. Rev. D 37 3406 · doi:10.1103/PhysRevD.37.3406
[23] R.R. Caldwell, R. Dave and P.J. Steinhardt, 1998 Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett.80 1582 [astro-ph/9708069] · Zbl 1371.83193 · doi:10.1103/PhysRevLett.80.1582
[24] A. Hebecker and C. Wetterich, 2001 Natural quintessence?, Phys. Lett. B 497 281 [hep-ph/0008205] · Zbl 0971.83517 · doi:10.1016/S0370-2693(00)01339-3
[25] M. Doran, J.-M. Schwindt and C. Wetterich, 2001 Structure formation and the time dependence of quintessence, Phys. Rev. D 64 123520 [astro-ph/0107525] · doi:10.1103/PhysRevD.64.123520
[26] C. Wetterich, 2002 Quintessence: The Dark energy in the universe?, Space Sci. Rev.100 195 [astro-ph/0110211] · doi:10.1023/A:1015878430289
[27] R. Bean, S.H. Hansen and A. Melchiorri, 2001 Early universe constraints on a primordial scaling field, Phys. Rev. D 64 103508 [astro-ph/0104162] · doi:10.1103/PhysRevD.64.103508
[28] C. Wetterich, 2004 Phenomenological parameterization of quintessence, Phys. Lett. B 594 17 [astro-ph/0403289] · doi:10.1016/j.physletb.2004.05.008
[29] M. Doran and G. Robbers, 2006 Early dark energy cosmologies J. Cosmol. Astropart. Phys.2006 06 026 [astro-ph/0601544]
[30] E. Calabrese, D. Huterer, E. V. Linder, A. Melchiorri and L. Pagano, 2011 Limits on dark radiation, early dark energy, and relativistic degrees of freedom, Phys. Rev. D 83 123504 [1103.4132] · doi:10.1103/PhysRevD.83.123504
[31] C.L. Reichardt, R. de Putter, O. Zahn and Z. Hou, 2012 New limits on Early Dark Energy from the South Pole Telescope, Astrophys. J.749 L9 [1110.5328] · doi:10.1088/2041-8205/749/1/L9
[32] S. Tsujikawa, 2013 Quintessence: A Review, Class. Quant. Grav.30 214003 [1304.1961] · Zbl 1277.83012 · doi:10.1088/0264-9381/30/21/214003
[33] Atacama Cosmology Telescope collaboration, J.L. Sievers et al., 2013 The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data J. Cosmol. Astropart. Phys.2013 10 060 [1301.0824]
[34] M. Archidiacono, L. Lopez-Honorez and O. Mena, 2014 Current constraints on early and stressed dark energy models and future 21 cm perspectives, Phys. Rev. D 90 123016 [1409.1802] · doi:10.1103/PhysRevD.90.123016
[35] V. Pettorino, L. Amendola and C. Wetterich, 2013 How early is early dark energy?, Phys. Rev. D 87 083009 [1301.5279] · doi:10.1103/PhysRevD.87.083009
[36] D. Shi and C.M. Baugh, 2016 Can we distinguish early dark energy from a cosmological constant?, Mon. Not. Roy. Astron. Soc.459 3540 [1511.00692] · doi:10.1093/mnras/stw882
[37] B.-Y. Pu, X.-D. Xu, B. Wang and E. Abdalla, 2015 Early dark energy and its interaction with dark matter, Phys. Rev. D 92 123537 [1412.4091] · doi:10.1103/PhysRevD.92.123537
[38] P. Brax, C. van de Bruck, S. Clesse, A.-C. Davis and G. Sculthorpe, 2014 Early Modified Gravity: Implications for Cosmology, Phys. Rev. D 89 123507 [1312.3361] · doi:10.1103/PhysRevD.89.123507
[39] N.A. Lima, V. Smer-Barreto and L. Lombriser, 2016 Constraints on decaying early modified gravity from cosmological observations, Phys. Rev. D 94 083507 [1603.05239] · doi:10.1103/PhysRevD.94.083507
[40] SDSS collaboration, M. Betoule et al., 2014 Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys.568 A22 [1401.4064] · doi:10.1051/0004-6361/201423413
[41] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 A13 [1502.01589] · doi:10.1051/0004-6361/201525830
[42] E. Aubourg et al., 2015 Cosmological implications of baryon acoustic oscillation measurements, Phys. Rev. D 92 123516 [1411.1074] · doi:10.1103/PhysRevD.92.123516
[43] V. Salvatelli, F. Piazza and C. Marinoni, 2016 Constraints on modified gravity from Planck 2015: when the health of your theory makes the difference J. Cosmol. Astropart. Phys.2016 09 027 [1602.08283]
[44] P. Creminelli, G. D’Amico, J. Norena and F. Vernizzi, 2009 The Effective Theory of Quintessence: the w < -1 Side Unveiled J. Cosmol. Astropart. Phys.2009 02 018 [0811.0827]
[45] G. Gubitosi, F. Piazza and F. Vernizzi, 2013 The Effective Field Theory of Dark Energy J. Cosmol. Astropart. Phys.2013 02 032 [1210.0201]
[46] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, 2013 Essential Building Blocks of Dark Energy J. Cosmol. Astropart. Phys.2013 08 025 [1304.4840]
[47] J.K. Bloomfield, E.E. Flanagan, M. Park and S. Watson, 2013 Dark energy or modified gravity? An effective field theory approach J. Cosmol. Astropart. Phys.2013 08 010 [1211.7054]
[48] J. Bloomfield, 2013 A Simplified Approach to General Scalar-Tensor Theories J. Cosmol. Astropart. Phys.2013 12 044 [1304.6712]
[49] F. Piazza and F. Vernizzi, 2013 Effective Field Theory of Cosmological Perturbations, Class. Quant. Grav.30 214007 [1307.4350] · Zbl 1277.83009 · doi:10.1088/0264-9381/30/21/214007
[50] L.A. Gergely and S. Tsujikawa, 2014 Effective field theory of modified gravity with two scalar fields: dark energy and dark matter, Phys. Rev. D 89 064059 [1402.0553] · doi:10.1103/PhysRevD.89.064059
[51] N. Frusciante, M. Raveri and A. Silvestri, 2014 Effective Field Theory of Dark Energy: a Dynamical Analysis J. Cosmol. Astropart. Phys.2014 02 026 [1310.6026]
[52] B. Hu, M. Raveri, N. Frusciante and A. Silvestri, 2014 Effective Field Theory of Cosmic Acceleration: an implementation in CAMB, Phys. Rev. D 89 103530 [1312.5742] · doi:10.1103/PhysRevD.89.103530
[53] M. Raveri, B. Hu, N. Frusciante and A. Silvestri, 2014 Effective Field Theory of Cosmic Acceleration: constraining dark energy with CMB data, Phys. Rev. D 90 043513 [1405.1022] · doi:10.1103/PhysRevD.90.043513
[54] N. Frusciante, G. Papadomanolakis and A. Silvestri, 2016 An Extended action for the effective field theory of dark energy: a stability analysis and a complete guide to the mapping at the basis of EFTCAMB J. Cosmol. Astropart. Phys.2016 07 018 [1601.04064]
[55] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, 2015 Exploring gravitational theories beyond Horndeski J. Cosmol. Astropart. Phys.2015 02 018 [1408.1952]
[56] J. Gleyzes, D. Langlois and F. Vernizzi, 2015 A unifying description of dark energy, Int. J. Mod. Phys. D 23 1443010 [1411.3712] · Zbl 1314.83055 · doi:10.1142/S021827181443010X
[57] J. Gleyzes, D. Langlois, M. Mancarella and F. Vernizzi, 2015 Effective Theory of Interacting Dark Energy J. Cosmol. Astropart. Phys.2015 08 054 [1504.05481]
[58] J. Gleyzes, D. Langlois, M. Mancarella and F. Vernizzi, 2016 Effective Theory of Dark Energy at Redshift Survey Scales J. Cosmol. Astropart. Phys.2016 02 056 [1509.02191]
[59] G. D’Amico, Z. Huang, M. Mancarella and F. Vernizzi, Weakening Gravity on Redshift-Survey Scales with Kinetic Matter Mixing, [1609.01272]
[60] Planck collaboration, P.A.R. Ade et al., 2014 Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.571 A16 [1303.5076] · doi:10.1051/0004-6361/201321591
[61] W.C. Algoner, H.E.S. Velten and W. Zimdahl, 2016 Scalar-tensor extension of the ΛCDM model J. Cosmol. Astropart. Phys.2016 11 034 [1607.03952]
[62] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XIV. Dark energy and modified gravity, Astron. Astrophys.594 A14 [1502.01590] · doi:10.1051/0004-6361/201525814
[63] J. Noller, F. von Braun-Bates and P.G. Ferreira, 2014 Relativistic scalar fields and the quasistatic approximation in theories of modified gravity, Phys. Rev. D 89 023521 [1310.3266] · doi:10.1103/PhysRevD.89.023521
[64] I. Sawicki and E. Bellini, 2015 Limits of quasistatic approximation in modified-gravity cosmologies, Phys. Rev. D 92 084061 [1503.06831] · doi:10.1103/PhysRevD.92.084061
[65] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, 2006 Causality, analyticity and an IR obstruction to UV completion J. High Energy Phys. JHEP10(2006)014 [hep-th/0602178]
[66] J. Beltran Jimenez, F. Piazza and H. Velten, 2016 Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars, Phys. Rev. Lett.116 061101 [1507.05047] · doi:10.1103/PhysRevLett.116.061101
[67] J.-P. Uzan, 2011 Varying Constants, Gravitation and Cosmology, Living Rev. Rel.14 2 [1009.5514] · Zbl 1215.83012 · doi:10.12942/lrr-2011-2
[68] S. Tsujikawa, 2015 Possibility of realizing weak gravity in redshift space distortion measurements, Phys. Rev. D 92 044029 [1505.02459] · doi:10.1103/PhysRevD.92.044029
[69] E.J. Ruiz and D. Huterer, 2015 Testing the dark energy consistency with geometry and growth, Phys. Rev. D 91 063009 [1410.5832] · doi:10.1103/PhysRevD.91.063009
[70] M. Kunz, S. Nesseris and I. Sawicki, 2015 Using dark energy to suppress power at small scales, Phys. Rev. D 92 063006 [1507.01486] · doi:10.1103/PhysRevD.92.063006
[71] J.L. Bernal, L. Verde and A.J. Cuesta, 2016 Parameter splitting in dark energy: is dark energy the same in the background and in the cosmic structures? J. Cosmol. Astropart. Phys.2016 02 059 [1511.03049]
[72] H. Steigerwald, Probing non-standard gravity with the growth index of cosmological perturbations, POS(FFP14)098
[73] T. Okumura et al., 2016 The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z∼ 1.4, Publ. Astron. Soc. Jap.68 24 [1511.08083] · doi:10.1093/pasj/psw029
[74] A. Nishizawa and T. Nakamura, 2014 Measuring Speed of Gravitational Waves by Observations of Photons and Neutrinos from Compact Binary Mergers and Supernovae, Phys. Rev. D 90 044048 [1406.5544] · doi:10.1103/PhysRevD.90.044048
[75] D. Bettoni, J.M. Ezquiaga, K. Hinterbichler and M. Zumalacárregui, Gravitational Waves and the Fate of Scalar-Tensor Gravity, [1608.01982]
[76] E. Bellini and I. Sawicki, 2014 Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity J. Cosmol. Astropart. Phys.2014 07 050 [1404.3713]
[77] E. Bellini, R. Jimenez and L. Verde, 2015 Signatures of Horndeski gravity on the Dark Matter Bispectrum J. Cosmol. Astropart. Phys.2015 05 057 [1504.04341]
[78] E. Bellini, A.J. Cuesta, R. Jimenez and L. Verde, 2016 Constraints on deviations from ΛCDM within Horndeski gravity J. Cosmol. Astropart. Phys.2016 02 053 [1509.07816]
[79] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, 2015 Healthy theories beyond Horndeski, Phys. Rev. Lett.114 211101 [1404.6495] · doi:10.1103/PhysRevLett.114.211101
[80] M. Zumalacárregui and J. García-Bellido, 2014 Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, Phys. Rev. D 89 064046 [1308.4685] · doi:10.1103/PhysRevD.89.064046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.