×

Spacetimes with vector distortion: inflation from generalised Weyl geometry. (English) Zbl 1400.83042

Summary: Spacetime with general linear vector distortion is introduced. Thus, the torsion and the nonmetricity of the affine connection are assumed to be proportional to a vector field (and not its derivatives). The resulting two-parameter family of non-Riemannian geometries generalises the conformal Weyl geometry and some other interesting special cases. Taking into account the leading nonlinear correction to the Einstein-Hilbert action results uniquely in the one-parameter extension of the Starobinsky inflation known as the alpha-attractor. The most general quadratic curvature action introduces, in addition to the canonical vector kinetic term, novel ghost-free vector-tensor interactions.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
53Z05 Applications of differential geometry to physics
53C05 Connections (general theory)

References:

[2] Allys, E.; Peter, P.; Rodriguez, Y., Generalized Proca action for an Abelian vector field, J. Cosmol. Astropart. Phys., 1602, 02, Article 004 pp. (2016)
[3] Aringazin, A. K.; Mikhailov, A. L., Matter fields in spacetime with vector nonmetricity, Class. Quantum Gravity, 8, 9, 1685 (1991) · Zbl 0731.53074
[4] Baekler, P.; Boulanger, N.; Hehl, F. W., Linear connections with propagating spin-3 field in gravity, Phys. Rev. D, 74, Article 125009 pp. (2006)
[7] Beltrán Jiménez, J.; Koivisto, T. S., Extended Gauss-Bonnet gravities in Weyl geometry, Class. Quantum Gravity, 31, 135002 (2014) · Zbl 1297.83037
[8] Beltran Jimenez, J.; Maroto, A. L., Dark energy, non-minimal couplings and the origin of cosmic magnetic fields, J. Cosmol. Astropart. Phys., 1012, Article 025 pp. (2010)
[11] Haghani, Z.; Khosravi, N.; Shahidi, S., The Weyl-Cartan Gauss-Bonnet gravity, Class. Quantum Gravity, 32, 21, 215016 (2015) · Zbl 1329.83137
[12] Hehl, F. W.; von der Heyde, P.; Kerlick, G. D.; Nester, J. M., General relativity with spin and torsion: foundations and prospects, Rev. Mod. Phys., 48, 393-416 (Jul. 1976) · Zbl 1371.83017
[13] Heinicke, C.; Baekler, P.; Hehl, F. W., Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity, Phys. Rev. D, 72, Article 025012 pp. (2005)
[14] Heisenberg, L., Generalization of the Proca action, J. Cosmol. Astropart. Phys., 1405, Article 015 pp. (2014)
[15] Kallosh, R.; Linde, A.; Roest, D., Superconformal inflationary \(α\)-attractors, J. High Energy Phys., 11, Article 198 pp. (2013) · Zbl 1342.83485
[16] Mukhanov, V. F.; Chibisov, G. V., Quantum fluctuations and a nonsingular universe, ZhETF Pisma Redaktsiiu, 33, 549-553 (May 1981)
[17] Ozkan, M.; Pang, Y.; Tsujikawa, S., Planck constraints on inflation in auxiliary vector modified \(f(R)\) theories, Phys. Rev. D, 92, 2, Article 023530 pp. (2015)
[19] Schrödinger, E., Die Struktur der Raum-Zeit (1993), Wiss. Buchges: Wiss. Buchges Darmstadt, Germany
[20] Starobinsky, A. A., A new type of isotropic cosmological models without singularity, Phys. Lett. B, 91, 99-102 (1980) · Zbl 1371.83222
[21] Starobinsky, A. A., The perturbation spectrum evolving from a nonsingular initially De-Sitter cosmology and the microwave background anisotropy, Sov. Astron. Lett., 9, 302 (1983)
[22] Tasinato, G., Cosmic acceleration from Abelian symmetry breaking, J. High Energy Phys., 04, Article 067 pp. (2014) · Zbl 1333.83281
[23] Weyl, H., Raum. Zeit. Materie: Vorlesungen über allgemeine relativitätstheorie (1921), J. Springer · JFM 48.0984.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.