Skip to main content
Log in

Cosmologies in Horndeski’s second-order vector-tensor theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Horndeski derived a most general vector-tensor theory in which the vector field respects the gauge symmetry and the resulting dynamical equations are of second order. The action contains only one free parameter, λ, that determines the strength of the non-minimal coupling between the gauge field and gravity. We investigate the cosmological consequences of this action and discuss observational constraints. For λ < 0 we identify singularities where the deceleration parameter diverges within a finite proper time. This effectively rules out any sensible cosmological application of the theory for a negative non-minimal coupling. We also find a range of parameter that gives a viable cosmology and study the phenomenology for this case. Observational constraints on the value of the coupling are rather weak since the interaction is higher-order in space-time curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Milgrom and R.H. Sanders, Rings and shells of dark matter as MOND artifacts, Astrophys. J. 678 (2008) 131 [arXiv:0709.2561] [INSPIRE].

    Article  ADS  Google Scholar 

  3. C. Brans and R.H. Dicke, Machs Principle and a Relativistic Theory of Gravitation, Phys. Rev. 124 (1961) 925.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. K.J. Nordtvedt, Post-Newtonian metric for a general class of scalar tensor gravitational theories and observational consequences, Astrophys. J. 161 (1970) 1059 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. R.V. Wagoner, Scalar tensor theory and gravitational waves, Phys. Rev. D 1 (1970) 3209 [INSPIRE].

    ADS  Google Scholar 

  6. J.D. Barrow and K.-i. Maeda, Extended inflationary universes, Nucl. Phys. B 341 (1990) 294 [INSPIRE].

    Article  ADS  Google Scholar 

  7. T.V. Ruzmaikina and A.A. Ruzmaikin, Gravitational Stability of an Expanding Universe in the Presence of a Magneric Field., Sov. Astron. 14 (1971) 963.

    ADS  Google Scholar 

  8. J.D. Barrow and A.C. Ottewill, The stability of general relativistic cosmological theory, J. Phys. A 16 (1983) 2757.

    MathSciNet  ADS  Google Scholar 

  9. J.D. Barrow and S. Cotsakis, Inflation and the Conformal Structure of Higher Order Gravity Theories, Phys. Lett. B 214 (1988) 515 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. T.P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. T.P. Sotiriou, B. Li and J.D. Barrow, Generalizations of teleparallel gravity and local Lorentz symmetry, Phys. Rev. D 83 (2011) 104030 [arXiv:1012.4039] [INSPIRE].

    ADS  Google Scholar 

  12. A.S. Goldhaber and M.M. Nieto, Terrestrial and extra-terrestrial limits on the photon mass, Rev. Mod. Phys. 43 (1971) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Barnes, Cosmology of a charged universe, Astrophys. J. 227 (1979) 1.

    Article  ADS  Google Scholar 

  14. J.D. Barrow and R. Burman, New light on heavy light, Nature 307 (1984) 14 [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Dolgov and Y. Zeldovich, Cosmology and Elementary Particles, Rev. Mod. Phys. 53 (1981) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Webb, V. Flambaum, C. Churchill, M. Drinkwater, and J. Barrow, Search for Time Variation of the Fine Structure Constant, Phys. Rev. Lett. 82 (1999) 884 [astro-ph/9803165].

    Article  ADS  Google Scholar 

  17. M.T. Murphy, J.K. Webb and V.V. Flambaum, Revision of VLT/UVES constraints on a varying fine-structure constant, Month. Not. Roy. Astron. Soc. 384 (2008) 1053 [astro-ph/0612407].

    Article  ADS  Google Scholar 

  18. J. Bekenstein, Fine Structure Constant: Is It Really a Constant?, Phys. Rev. D 25 (1982) 1527 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. H.B. Sandvik, J.D. Barrow and J. Magueijo, A simple cosmology with a varying fine structure constant, Phys. Rev. Lett. 88 (2002) 031302 [astro-ph/0107512] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.D. Barrow and D.F. Mota, Qualitative analysis of universes with varying alpha, Class. Quant. Grav. 19 (2002) 6197 [gr-qc/0207012] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. J.D. Barrow, J. Magueijo and H.B. Sandvik, A cosmological tale of two varying constants, Phys. Lett. B 541 (2002) 201 [astro-ph/0204357].

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Barrow, H.B. Sandvik and J. Magueijo, Behavior of varying-alpha cosmologies, Phys. Rev. D 65 (2002) 063504 [astro-ph/0109414].

    MathSciNet  ADS  Google Scholar 

  23. J.-P. Uzan, The Fundamental constants and their variation: Observational status and theoretical motivations, Rev. Mod. Phys. 75 (2003) 403 [hep-ph/0205340] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J.D. Barrow and S.Z. Lip, A Generalized Theory of Varying Alpha, Phys. Rev. D 85 (2012) 023514 [arXiv:1110.3120] [INSPIRE].

    ADS  Google Scholar 

  25. M.S. Turner and L.M. Widrow, Inflation Produced, Large Scale Magnetic Fields, Phys. Rev. D 37 (1988) 2743 [INSPIRE].

    ADS  Google Scholar 

  26. B. Ratra, Cosmologicalseedmagnetic field from inflation, Astrophys. J. 391 (1992) L1 [INSPIRE].

    Article  ADS  Google Scholar 

  27. E. Calzetta, A. Kandus, and F. Mazzitelli, Primordial magnetic fields induced by cosmological particle creation, Phys. Rev. D 57 (1998) 7139 [astro-ph/9707220].

    ADS  Google Scholar 

  28. M. Giovannini, Magnetogenesis and the dynamics of internal dimensions, Phys. Rev. D 62 (2000) 123505 [hep-ph/0007163] [INSPIRE].

    ADS  Google Scholar 

  29. G. Lambiase and A. Prasanna, Gauge invariant wave equations in curved space-times and primordial magnetic fields, Phys. Rev. D 70 (2004) 063502 [gr-qc/0407071] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. K.E. Kunze, Primordial magnetic seed fields from extra dimensions, Phys. Lett. B 623 (2005) 1 [hep-ph/0506212] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. K. Bamba and M. Sasaki, Large-scale magnetic fields in the inflationary universe, JCAP 02 (2007) 030 [astro-ph/0611701].

    Article  ADS  Google Scholar 

  32. K.E. Kunze, Primordial magnetic fields and nonlinear electrodynamics, Phys. Rev. D 77 (2008) 023530 [arXiv:0710.2435] [INSPIRE].

    ADS  Google Scholar 

  33. L. Campanelli, P. Cea, G. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in R n F 2 and IF 2 models, Phys. Rev. D 77 (2008) 123002 [arXiv:0802.2630] [INSPIRE].

    ADS  Google Scholar 

  34. L. Campanelli, P. Cea, G. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in Nonlinear Electrodynamics, Phys. Rev. D 77 (2008) 043001 [arXiv:0710.2993] [INSPIRE].

    ADS  Google Scholar 

  35. K. Bamba, N. Ohta and S. Tsujikawa, Generic estimates for magnetic fields generated during inflation including Dirac- Born-Infeld theories, Phys. Rev. D 78 (2008) 043524 [arXiv:0805.3862] [INSPIRE].

    ADS  Google Scholar 

  36. K. Bamba, C. Geng and S. Ho, Large-scale magnetic fields from inflation due to Chern-Simons-like effective interaction, JCAP 11 (2008) 013 [arXiv:0806.1856] [INSPIRE].

    Article  ADS  Google Scholar 

  37. L. Campanelli and P. Cea, Maxwell-Kostelecký Electromagnetism and Cosmic Magnetization, Phys. Lett. B 675 (2009) 155 [arXiv:0812.3745] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H.J. Mosquera Cuesta and G. Lambiase, Primordial magnetic fields and gravitational baryogenesis in nonlinear electrodynamics, Phys. Rev. D 80 (2009) 023013 [arXiv:0907.3678] [INSPIRE].

    ADS  Google Scholar 

  39. L. Campanelli, P. Cea and G. Fogli, Lorentz Symmetry Violation and Galactic Magnetism, Phys. Lett. B 680 (2009) 125 [arXiv:0805.1851] [INSPIRE].

    Article  ADS  Google Scholar 

  40. K.E. Kunze, Large scale magnetic fields from gravitationally coupled electrodynamics, Phys. Rev. D 81 (2010) 043526 [arXiv:0911.1101] [INSPIRE].

    ADS  Google Scholar 

  41. L. Ford, Inflation driven by a vector field, Phys. Rev. D 40 (1989) 967.

    ADS  Google Scholar 

  42. W. Donnelly and T. Jacobson, Coupling the inflaton to an expanding aether, Phys. Rev. D 82 (2010) 064032 [arXiv:1007.2594] [INSPIRE].

    ADS  Google Scholar 

  43. M. Gasperini, Inflation and broken Lorentz symmetry in the very early universe, Phys. Lett. B 163 (1985) 84.

    Article  ADS  Google Scholar 

  44. S.M. Carroll and E.A. Lim, Lorentz-violating vector fields slow the universe down, Phys. Rev. D 70 (2004) 123525 [hep-th/0407149] [INSPIRE].

    ADS  Google Scholar 

  45. E. Lim, Can we see Lorentz-violating vector fields in the CMB?, Phys. Rev. D 71 (2005) 063504 [astro-ph/0407437].

    ADS  Google Scholar 

  46. B. Li, D. Fonseca Mota and J.D. Barrow, Detecting a Lorentz-Violating Field in Cosmology, Phys. Rev. D 77 (2008) 024032 [arXiv:0709.4581] [INSPIRE].

    ADS  Google Scholar 

  47. J.A. Zuntz, P. Ferreira and T. Zlosnik, Constraining Lorentz violation with cosmology, Phys. Rev. Lett. 101 (2008) 261102 [arXiv:0808.1824] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C. Armendariz-Picon, N.F. Sierra and J. Garriga, Primordial Perturbations in Einstein-Aether and BPSH Theories, JCAP 07 (2010) 010 [arXiv:1003.1283] [INSPIRE].

    Article  ADS  Google Scholar 

  49. T. Zlosnik, P. Ferreira and G. Starkman, Growth of structure in theories with a dynamical preferred frame, Phys. Rev. D 77 (2008) 084010 [arXiv:0711.0520] [INSPIRE].

    ADS  Google Scholar 

  50. X.-H. Meng and X.-L. Du, A Specific Case of Generalized Einstein-aether Theories, Commun. Theor. Phys. 57 (2012) 227 [arXiv:1109.0823] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. M. Nakashima and T. Kobayashi, CMB Polarization in Einstein-Aether Theory, arXiv:1012.5348 [INSPIRE].

  52. T. Koivisto and D.F. Mota, Vector Field Models of Inflation and Dark Energy, JCAP 08 (2008) 021 [arXiv:0805.4229] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. A. Golovnev, V. Mukhanov and V. Vanchurin, Vector Inflation, JCAP 06 (2008) 009 [arXiv:0802.2068] [INSPIRE].

    Article  ADS  Google Scholar 

  54. K. Bamba and S.D. Odintsov, Inflation and late-time cosmic acceleration in non-minimal Maxwell-F(R) gravity and the generation of large-scale magnetic fields, JCAP 04 (2008) 024 [arXiv:0801.0954] [INSPIRE].

    Article  ADS  Google Scholar 

  55. J. Beltrán Jiménez and A.L. Maroto, A cosmic vector for dark energy, Phys. Rev. D 78 (2008) 063005 [arXiv:0801.1486] [INSPIRE].

    ADS  Google Scholar 

  56. B. Himmetoglu, C.R. Contaldi and M. Peloso, Instability of anisotropic cosmological solutions supported by vector fields, Phys. Rev. Lett. 102 (2009) 111301 [arXiv:0809.2779] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S.M. Carroll, T.R. Dulaney, M.I. Gresham and H. Tam, Instabilities in the Aether, Phys. Rev. D 79 (2009) 065011 [arXiv:0812.1049] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. B. Himmetoglu, C.R. Contaldi and M. Peloso, Instability of the ACW model and problems with massive vectors during inflation, Phys. Rev. D 79 (2009) 063517 [arXiv:0812.1231] [INSPIRE].

    ADS  Google Scholar 

  59. T.S. Koivisto, D.F. Mota and C. Pitrou, Inflation from N-Forms and its stability, JHEP 09 (2009) 092 [arXiv:0903.4158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. B. Himmetoglu, C.R. Contaldi and M. Peloso, Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature, Phys. Rev. D 80 (2009) 123530 [arXiv:0909.3524] [INSPIRE].

    ADS  Google Scholar 

  61. A. Golovnev, Linear perturbations in vector inflation and stability issues, Phys. Rev. D 81 (2010) 023514 [arXiv:0910.0173] [INSPIRE].

    ADS  Google Scholar 

  62. J.D. Barrow and J.J. Levin, Chaos in the Einstein Yang-Mills equations, Phys. Rev. Lett. 80 (1998) 656 [gr-qc/9706065] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Y. Jin and K.-i. Maeda, Chaos of Yang-Mills field in class a Bianchi spacetimes, Phys. Rev. D 71 (2005) 064007 [gr-qc/0412060] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  64. J.D. Barrow, Y. Jin and K.-i. Maeda, Cosmological co-evolution of Yang-Mills fields and perfect fluids, Phys. Rev. D 72 (2005) 103512 [gr-qc/0509097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. G. Horndeski, Conservation of Charge and the Einstein-Maxwell Field Equations, J. Math. Phys. 17 (1976) 1980 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. G. Esposito-Farese, C. Pitrou and J.-P. Uzan, Vector theories in cosmology, Phys. Rev. D 81 (2010) 063519 [arXiv:0912.0481] [INSPIRE].

    ADS  Google Scholar 

  67. H.A. Buchdahl, On a lagrangian for nonminimally coupled gravitational and electromagnetic fields, J. Phys. A 12 (1979) 1037 [INSPIRE].

    ADS  Google Scholar 

  68. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. D. Lovelock, The four-dimensionality of space and the Einstein tensor, J. Math. Phys. 13 (1972) 874 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. G.W. Horndeski, Second-Order Scalar-Tensor Field Equations in a Four-Dimensional Space, Int. J. Theor. Phys. 10 (1974) 363.

    Article  MathSciNet  Google Scholar 

  71. T. Kobayashi, M. Yamaguchi and J. Yokoyama, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys. 126 (2011) 511 [arXiv:1105.5723] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  72. A. De Felice, T. Kobayashi and S. Tsujikawa, Effective gravitational couplings for cosmological perturbations in the most general scalar-tensor theories with second-order field equations, Phys. Lett. B 706 (2011) 123 [arXiv:1108.4242] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. De Felice and S. Tsujikawa, Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models, JCAP 02 (2012) 007 [arXiv:1110.3878] [INSPIRE].

    Article  Google Scholar 

  74. C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, Self-tuning and the derivation of a class of scalar-tensor theories, Phys. Rev. D 85 (2012) 104040 [arXiv:1112.4866] [INSPIRE].

    ADS  Google Scholar 

  75. E.J. Copeland, A. Padilla and P.M. Saffin, The cosmology of the Fab-Four, JCAP 12 (2012) 026 [arXiv:1208.3373] [INSPIRE].

    Article  ADS  Google Scholar 

  76. S.A. Appleby, A. De Felice and E.V. Linder, Fab 5: Noncanonical Kinetic Gravity, Self Tuning and Cosmic Acceleration, JCAP 10 (2012) 060 [arXiv:1208.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  77. G. Horndeski and J. Wainwright, Energy Momentum Tensor of the Electromagnetic Field, Phys. Rev. D 16 (1977) 1691 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  78. V.G. LeBlanc, Asymptotic states of magnetic Bianchi I cosmologies, Class. Quant. Grav. 14 (1997) 2281 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. C.B. Collins, Qualitative magnetic cosmology, Comm. Math. Phys. 27 (1972) 37.

    Article  MathSciNet  ADS  Google Scholar 

  80. C. Misner, K. Thorne and J. Wheeler, Gravitation, W.H. Freeman, San Francisco U.S.A. (1973).

  81. J. Wainwright and G.F.R. Ellis, Dynamical Systems in Cosmology, Cambridge University Press, Cambridge U.K. (1997).

    Book  Google Scholar 

  82. Y.B. Zel’dovich, The Hypothesis of Cosmological Magnetic Inhomogeneity., Sov. Astron. 13 (1970) 608.

    ADS  Google Scholar 

  83. J.D. Barrow, Cosmological limits on slightly skew stresses, Phys. Rev. D 55 (1997) 7451 [gr-qc/9701038] [INSPIRE].

  84. J. Barrow and R. Maartens, Anisotropic stresses in inhomogeneous universes, Phys. Rev. D 59 (1998) 043502 [astro-ph/9808268].

    Google Scholar 

  85. J. Barrow, Light elements and the isotropy of the Universe, Mont. Not. Roy. Astron. Soc. 175 (1976)359.

    ADS  Google Scholar 

  86. R. Lafrance and R.C. Myers, Gravitys rainbow, Phys. Rev. D 51 (1995) 2584 [hep-th/9411018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  87. J.D. Barrow, P.G. Ferreira and J. Silk, Constraints on a primordial magnetic field, Phys. Rev. Lett. 78 (1997) 3610 [astro-ph/9701063] [INSPIRE].

    Article  ADS  Google Scholar 

  88. M. Thorsrud, D.F. Mota and S. Hervik, Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field, JHEP 10 (2012) 066 [arXiv:1205.6261] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  89. T. Koivisto and D.F. Mota, Anisotropic Dark Energy: Dynamics of Background and Perturbations, JCAP 06 (2008) 018 [arXiv:0801.3676] [INSPIRE].

    Article  ADS  Google Scholar 

  90. W. Lim, U. Nilsson and J. Wainwright, Anisotropic universes with isotropic cosmic microwave background radiation: Letter to the editor, Class. Quant. Grav. 18 (2001) 5583 [gr-qc/9912001] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikjel Thorsrud.

Additional information

ArXiv ePrint: 1211.5403

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrow, J.D., Thorsrud, M. & Yamamoto, K. Cosmologies in Horndeski’s second-order vector-tensor theory. J. High Energ. Phys. 2013, 146 (2013). https://doi.org/10.1007/JHEP02(2013)146

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)146

Keywords

Navigation