×

An unsymmetric 8-node hexahedral solid-shell element based on ANS and incompatible concepts for thin shell analysis. (English) Zbl 1536.74134

Summary: In this paper, an incompatible unsymmetric 8-node hexahedral solid-shell element is proposed with different sets of trial and test functions. The trial functions used in the 8-node hexahedral solid element in our previous work are adopted with minor revision. In addition, to eliminate the transverse shear and trapezoidal locking in the calculation of thin shell structures, the test functions are revised by the assumed natural strain method. The present solid-shell element inherits advantages from the original solid element and also alleviates the typical locking phenomena for shell elements. Numerical investigations show that the present element is insensitive to mesh distortion and has rapid convergence. In the tests of thin shell structures with bending, it can also provide locking-free predictions with high precision. Finally, the present element is extended to geometrically nonlinear analysis and its accuracy is demonstrated by a simple numerical example.

MSC:

74K25 Shells
74S05 Finite element methods applied to problems in solid mechanics

Software:

HYPLAS
Full Text: DOI

References:

[1] Sze, K. Y.; Yao, L. Q., A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I-solid-shell element formulation. Internat. J. Numer. Methods Engrg., 4, 545-564 (2000) · Zbl 0990.74073
[2] Stolarski, H.; Belytschko, T., Shear and membrane locking in curved C0 elements. Comput. Methods Appl. Mech. Engrg., 3, 279-296 (1983) · Zbl 0509.73072
[3] Mostafa, M.; Sivaselvan, M. V.; Felippa, C. A., A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis. Internat. J. Numer. Methods Engrg., 2, 145-180 (2013) · Zbl 1352.74414
[4] Hauptmann, R.; Schweizerhof, K., A systematic development of ’solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Internat. J. Numer. Methods Engrg., 49-69 (1998) · Zbl 0917.73067
[5] Mostafa, M., An improved solid-shell element based on ANS and EAS concepts. Internat. J. Numer. Methods Engrg., 11, 1362-1380 (2016) · Zbl 07870041
[6] Rajendran, S.; Liew, K. M., A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. Internat. J. Numer. Methods Engrg., 11, 1713-1748 (2003) · Zbl 1032.74680
[7] Rajendran, S., A technique to develop mesh-distortion immune finite elements. Comput. Methods Appl. Mech. Engrg., 17-20, 1044-1063 (2010) · Zbl 1227.74090
[8] Lee, N.-S.; Bathe, K.-J., Effects of element distortions on the performance of isoparametric elements. Internat. J. Numer. Methods Engrg., 20, 3553-3576 (1993) · Zbl 0800.73465
[9] Bathe, K.-J.; Dvorkin, E. N., A formulation of general shell elements-the use of mixed interpolation of tensorial components. Internat. J. Numer. Methods Engrg., 3, 697-722 (1986) · Zbl 0585.73123
[10] Wilson, E. L.; Taylor, R. L.; Doherty, W. P.; Ghaboussi, J., Incompatible displacement models. Numer. Comput. Method. Struct. Mech., 43-57 (1973)
[11] Taylor, R.; Beresford, P.; Wilson, E. L., A non-conforming element for stress analysis. Internat. J. Numer. Methods Engrg., 1211-1219 (1976) · Zbl 0338.73041
[12] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes. Internat. J. Numer. Methods Engrg., 8, 1595-1638 (1990) · Zbl 0724.73222
[13] Pfefferkorn, R.; Betsch, P., Mesh distortion insensitive and locking-free Petrov-Galerkin low-order EAS elements for linear elasticity. Internat. J. Numer. Methods Engrg., 23, 6924-6954 (2021) · Zbl 07863826
[14] Vu-Quoc, L.; Tan, X. G., Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput. Methods Appl. Mech. Engrg., 9-10, 975-1016 (2003) · Zbl 1091.74524
[15] Mattern, S.; Schmied, C.; Schweizerhof, K., Highly efficient solid and solid-shell finite elements with mixed strain-displacement assumptions specifically set up for explicit dynamic simulations using symbolic programming. Comput. Struct., 210-225 (2015)
[16] Cardoso, R. P.R.; Yoon, J. W.; Mahardika, M.; Choudhry, S.; Alves de Sousa, R. J.; Fontes Valente, R. A., Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Internat. J. Numer. Methods Engrg., 2, 156-187 (2008) · Zbl 1195.74165
[17] Schwarze, M.; Reese, S., A reduced integration solid-shell finite element based on the EAS and the ANS concept-geometrically linear problems. Internat. J. Numer. Methods Engrg., 10, 1322-1355 (2009) · Zbl 1183.74315
[18] Hughes, T. J.R., Generalization of selective integration procedures to anisotropic and nonlinear media. Internat. J. Numer. Methods Engrg., 9, 1413-1418 (1980) · Zbl 0437.73053
[19] Zhou, P.-L.; Cen, S.; Huang, J.-B.; Li, C.-F.; Zhang, Q., An unsymmetric 8-node hexahedral element with high distortion tolerance. Internat. J. Numer. Methods Engrg., 8, 1130-1158 (2017) · Zbl 07874339
[20] Huang, Y. Q.; Yang, Y. F.; Wang, J. Z.; Liu, X. C.; Chen, H. B., Unsymmetric extensions of Wilson’s incompatible four-node quadrilateral and eight-node hexahedral elements. Internat. J. Numer. Methods Engrg., 1, 101-127 (2021) · Zbl 1531.74074
[21] Ooi, E. T.; Rajendran, S.; Yeo, J. H., A 20-node hexahedron element with enhanced distortion tolerance. Internat. J. Numer. Methods Engrg., 15, 2501-2530 (2004) · Zbl 1075.74665
[22] Xie, Q.; Sze, K. Y.; Zhou, Y. X., Modified and Trefftz unsymmetric finite element models. Int. J. Mech. Mater. Design, 1, 53-70 (2014)
[23] Li, Z.; Huang, J.; Cen, S.; Li, C., An unsymmetric 8-node hexahedral solid-shell element with high distortion tolerance: Geometric nonlinear formulations. Internat. J. Numer. Methods Engrg., 5, 580-606 (2019) · Zbl 07859712
[24] Chen, X.; Chen, W.; Xu, J.; Tu, W.; Lu, J., An unsymmetric 8-node plane element immune to mesh distortion for linear isotropic hardening material. Internat. J. Numer. Methods Engrg., 20, 5540-5557 (2021) · Zbl 07863905
[25] Huang, Y.-Q.; Huan, Y.-K.; Chen, H.-B., An incompatible and unsymmetric four-node quadrilateral plane element with high numerical performance. Internat. J. Numer. Methods Engrg., 15, 3382-3396 (2020) · Zbl 07863285
[26] Yang, Y. F.; Huang, Y. Q.; Wang, J. Z.; Liu, X. C.; Chen, H. B., Two 8-node quadrilateral unsymmetric elements with different incompatible modes immune to severe distortion. Internat. J. Numer. Methods Engrg., 1-25 (2023)
[27] Huang, J.; Cen, S.; Li, Z.; Li, C.-F., An unsymmetric 8-node hexahedral solid-shell element with high distortion tolerance: Linear formulations. Internat. J. Numer. Methods Engrg., 12-13, 759-783 (2018) · Zbl 07878406
[28] Liew, K.; Rajendran, S.; Wang, J., A quadratic plane triangular element immune to quadratic mesh distortions under quadratic displacement fields. Comput. Methods Appl. Mech. Engrg., 9, 1207-1223 (2006), URL https://www.sciencedirect.com/science/article/pii/S0045782505001593 · Zbl 1115.74050
[29] Wu, C. C.; Huang, M. G.; Pian, T., Consistency condition and convergence criteria of incompatible elements: General formulation of incompatible functions and its application. Comput. Struct., 5, 639-644 (1987) · Zbl 0623.73077
[30] Yuan, K. Y.; Huang, Y. S.; Pian, T. H.H., New strategy for assumed stresses for 4-node hybrid stress membrane element. Internat. J. Numer. Methods Engrg., 10, 1747-1763 (1993) · Zbl 0772.73086
[31] Pfefferkorn, R.; Betsch, P., Hourglassing- and locking-free mesh distortion insensitive Petrov-Galerkin EAS element for large deformation solid mechanics. Internat. J. Numer. Methods Engrg., 6, 1307-1343 (2023) · Zbl 1532.74127
[32] Andelfinger, U.; Ramm, E., EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Internat. J. Numer. Methods Engrg., 8, 1311-1337 (1993) · Zbl 0772.73071
[33] Reddy, J. N., An Introduction to Nonlinear Finite Element Analysis (2004), Oxford University Press · Zbl 1057.65087
[34] E. A. de Souza Neto, D. R.J. O., Computational Methods for Plasticity: Theory and Applications (2008)
[35] Belytschko, T.; Liu, W.; Moran, B.; Elkhodary, K., Nonlinear Finite Elements for Continua and Structures (2013) · Zbl 1279.74002
[36] Macneal, R. H.; Harder, R. L., A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des., 1, 3-20 (1985)
[37] Simo, J.; Armero, F.; Taylor, R., Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput. Methods Appl. Mech. Engrg., 3-4, 359-386 (1993) · Zbl 0846.73068
[38] Belytschko, T.; Wong, B. L.; Stolarski, H., Assumed strain stabilization procedure for the 9-node Lagrange shell element. Internat. J. Numer. Methods Engrg., 2, 385-414 (1989) · Zbl 0674.73054
[39] Simo, J.; Fox, D.; Rifai, M., On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects. Comput. Methods Appl. Mech. Engrg., 1, 53-92 (1989) · Zbl 0724.73138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.