×

An unsymmetric 8-node hexahedral solid-shell element with high distortion tolerance: geometric nonlinear formulations. (English) Zbl 07859712

Summary: A recent distortion-tolerant unsymmetric 8-node hexahedral solid-shell element US-ATFHS8, which takes the analytical solutions of linear elasticity as the trial functions, is successfully extended to geometric nonlinear analysis. This extension is based on the corotational (CR) approach due to its simplicity and high efficiency, especially for geometric nonlinear analysis where the strain is still small. Based on the assumption that the analytical trial functions can properly work in each increment during the nonlinear analysis, the incremental corotational formulations of the nonlinear solid-shell element US-ATFHS8 are derived within the updated Lagrangian (UL) framework, in which an appropriate updated strategy for linear analytical trial functions is proposed. Numerical examples show that the present nonlinear element US-ATFHS8 possesses excellent performance for various rigorous tests no matter whether regular or distorted mesh is used. Especially, it even performs well in some situations that other conventional elements cannot work.
{© 2019 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
74Kxx Thin bodies, structures
65Nxx Numerical methods for partial differential equations, boundary value problems

Software:

ABAQUS
Full Text: DOI

References:

[1] ZienkiewiczOC, TaylorRL, FoxD. The Finite Element Method for Solid and Structural Mechanics. 7th ed.Oxford, UK: Butterworth‐Heinemann; 2014. · Zbl 1307.74003
[2] BatheK‐J. Finite Element Procedures. 2nd ed.Watertown, MA: K.J. Bathe; 2014.
[3] BelytschkoT, LiuW, MoranB, ElkhodaryKI. Nonlinear Finite Elements for Continua and Structures. 2nd ed.Chichester, UK: John Wiley & Sons; 2014.
[4] De BorstR, CrisfieldMA, RemmersJJ, VerhooselCV. Nonlinear Finite Element Analysis of Solids and Structures. Chichester, UK: John Wiley & Sons; 2012. · Zbl 1300.74002
[5] ParischH. A continuum‐based shell theory for nonlinear applications. Int J Numer Methods Eng. 1995;38(11):1855‐1883. · Zbl 0826.73041
[6] HauptmannR, SchweizerhofK. A systematic development of ‘solid‐shell’ element formulations for linear and non‐linear analyses employing only displacement degrees of freedom. Int J Numer Methods Eng. 1998;42(1):49‐69. · Zbl 0917.73067
[7] SchoopH. Boundary surface orientated shell theories with large deflections. Ingenieur‐Archiv. 1986;56(6):427‐437. · Zbl 0595.73061
[8] SansourC. A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch Appl Mech. 1995;65(3):194‐216. · Zbl 0827.73044
[9] HauptmannR, SchweizerhofK, DollS. Extension of the ‘solid‐shell’ concept for application to large elastic and large elastoplastic deformations. Int J Numer Methods Eng. 2000;49(9):1121‐1141. · Zbl 1048.74041
[10] SzeKY, YaoLQ. A hybrid stress ANS solid‐shell element and its generalization for smart structure modelling. Part I—solid‐shell element formulation. Int J Numer Methods Eng. 2000;48(4):545‐564. · Zbl 0990.74073
[11] SzeKY. Three‐dimensional continuum finite element models for plate/shell analysis. Prog Struct Eng Mater. 2002;4(4):400‐407.
[12] HuangJB, CenS, LiZ, LiCF. An unsymmetric 8‐node hexahedral solid‐shell element with high distortion tolerance: linear formulations. Int J Numer Methods Eng. 2018;116(12‐13):759‐783. · Zbl 07878406
[13] MostafaM, SivaselvanMV, FelippaCA. A solid‐shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis. Int J Numer Methods Eng. 2013;95(2):145‐180. · Zbl 1352.74414
[14] RajendranS, LiewKM. A novel unsymmetric 8‐node plane element immune to mesh distortion under a quadratic displacement field. Int J Numer Methods Eng. 2003;58(11):1713‐1748. · Zbl 1032.74680
[15] RajendranS. A technique to develop mesh‐distortion immune finite elements. Comput Methods Appl Mech Eng. 2010;199(17):1044‐1063. · Zbl 1227.74090
[16] OoiET, RajendranS, YeoJH. A 20‐node hexahedron element with enhanced distortion tolerance. Int J Numer Methods Eng. 2004;60(15):2501‐2530. · Zbl 1075.74665
[17] OoiET, RajendranS, YeoJH. Extension of unsymmetric finite elements US‐QUAD8 and US‐HEXA20 for geometric nonlinear analyses. Engineering Computations. 2007;24(3‐4):407‐431. · Zbl 1198.74101
[18] OoiET, RajendranS, YeoJH. Remedies to rotational frame dependence and interpolation failure of US‐QUAD8 element. Commun Numer Methods Eng. 2008;24(11):1203‐1217. · Zbl 1153.74048
[19] LongYQ, CenS, LongZF. Advanced Finite Element Method in Structural Engineering. Berlin, Germany: Springer‐Verlag GmbH Berlin Heidelberg; 2009. · Zbl 1168.74005
[20] CenS, ZhouGH, FuXR. A shape‐free 8‐node plane element unsymmetric analytical trial function method. Int J Numer Methods Eng. 2012;91(2):158‐185. · Zbl 1246.74057
[21] CenS, ZhouPL, LiCF, WuCJ. An unsymmetric 4‐node, 8‐DOF plane membrane element perfectly breaking through MacNeal’s theorem. Int J Numer Methods Eng. 2015;103(7):469‐500. · Zbl 1352.74158
[22] LiZ, CenS, WuCJ, ShangY, LiCF. High‐performance geometric nonlinear analysis with the unsymmetric 4‐node, 8‐DOF plane element US‐ATFQ4. Int J Numer Methods Eng. 2018;114(9):931‐954. · Zbl 07878391
[23] ZhouPL, CenS, HuangJB, LiCF, ZhangQ. An unsymmetric 8‐node hexahedral element with high distortion tolerance. Int J Numer Methods Eng. 2017;109(8):1130‐1158. · Zbl 07874339
[24] ShangY, CenS, QianZ‐H, LiC. High‐performance unsymmetric 3‐node triangular membrane element with drilling DOFs can correctly undertake in‐plane moments. Engineering Computations. 2018;35(7):2543‐2556.
[25] ShangY, CenS, ZhouM‐J. 8‐node unsymmetric distortion‐immune element based on airy stress solutions for plane orthotropic problems. Acta Mechanica. 2018;229(12):5031‐5049. · Zbl 1430.74139
[26] ShangY, OuyangW. 4‐node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh‐distortion. Int J Numer Methods Eng. 2018;113(10):1589‐1606. · Zbl 07867282
[27] Qing‐HuaQ. Trefftz finite element method and its applications. Appl Mech Rev. 2005;58(5):316‐337.
[28] CowanT, CoombsWM. Rotationally invariant distortion resistant finite‐elements. Comput Methods Appl Mech Eng. 2014;275:189‐203. · Zbl 1296.74107
[29] KimKD, LiuGZ, HanSC. A resultant 8‐node solid‐shell element for geometrically nonlinear analysis. Computational Mechanics. 2005;35(5):315‐331. · Zbl 1109.74360
[30] Alves de SousaRJ, CardosoRPR, Fontes ValenteRA, YoonJ‐W, GrácioJJ, Natal JorgeRM. A new one‐point quadrature enhanced assumed strain (EAS) solid‐shell element with multiple integration points along thickness—part II: nonlinear applications. Int J Numer Methods Eng. 2006;67(2):160‐188. · Zbl 1110.74840
[31] Abed‐MeraimF, CombescureA. An improved assumed strain solid‐shell element formulation with physical stabilization for geometric non‐linear applications and elastic‐plastic stability analysis. Int J Numer Methods Eng. 2009;80(13):1640‐1686. · Zbl 1183.74254
[32] SchwarzeM, ReeseS. A reduced integration solid‐shell finite element based on the EAS and the ANS concept—large deformation problems. Int J Numer Methods Eng. 2011;85(3):289‐329. · Zbl 1217.74135
[33] FloresFG. A simple reduced integration hexahedral solid‐shell element for large strains. Comput Methods Appl Mech Eng. 2016;303:260‐287. · Zbl 1425.74292
[34] MostafaM. An improved solid‐shell element based on ANS and EAS concepts. Int J Numer Methods Eng. 2016;108(11):1362‐1380. · Zbl 07870041
[35] WangP, ChalalH, Abed‐MeraimF. Quadratic solid‐shell elements for nonlinear structural analysis and sheet metal forming simulation. Computational Mechanics. 2017;59(1):161‐186.
[36] FelippaCA, HaugenB. A unified formulation of small‐strain corotational finite elements: I. theory. Comput Methods Appl Mech Eng. 2005;194(21‐24):2285‐2335. · Zbl 1093.74055
[37] MostafaM, SivaselvanMV. On best‐fit corotated frames for 3D continuum finite elements. Int J Numer Methods Eng. 2014;98(2):105‐130. · Zbl 1352.74413
[38] Abaqus 2018 Documentation. Providence, RI: Dassault Systèmes Simulia Corp; 2017.
[39] SimoJC, HughesTJ. Computational Inelasticity. New York, NY: Springer Science & Business Media; 1998. · Zbl 0934.74003
[40] StanderN, MatzenmillerA, RammE. An assessment of assumed strain methods in finite rotation shell analysis. Engineering Computations. 1989;6(1):58‐66.
[41] ParischH. An investigation of a finite rotation four node assumed strain shell element. Int J Numer Methods Eng. 1991;31(1):127‐150. · Zbl 0825.73783
[42] SzeKY, ChanWK, PianTHH. An eight‐node hybrid‐stress solid‐shell element for geometric non‐linear analysis of elastic shells. Int J Numer Methods Eng. 2002;55(7):853‐878. · Zbl 1058.74638
[43] MacNealRH, HarderRL. A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des. 1985;1(1):3‐20.
[44] SimoJC, FoxDD, RifaiMS. On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput Methods Appl Mech Eng. 1989;73(1):53‐92. · Zbl 0724.73138
[45] SzeK, LiuX, LoS. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des. 2004;40(11):1551‐1569.
[46] ZhangJ, LiuD, LiuY. Degenerated shell element with composite implicit time integration scheme for geometric nonlinear analysis. Int J Numer Methods Eng. 2016;105(7):483‐513. · Zbl 1540.74155
[47] LegayA, CombescureA. Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS. Int J Numer Methods Eng. 2003;57(9):1299‐1322. · Zbl 1062.74619
[48] CardosoRP, YoonJW, MahardikaM, ChoudhryS, Alves de SousaR, Fontes ValenteR. Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one‐point quadrature solid‐shell elements. Int J Numer Methods Eng. 2008;75(2):156‐187. · Zbl 1195.74165
[49] WengJ, HuangTS, AhujaN. Motion and structure from two perspective views: algorithms, error analysis, and error estimation. IEEE Trans Pattern Anal Mach Intell. 1989;11(5):451‐476.
[50] HornBK. Closed‐form solution of absolute orientation using unit quaternions. JOSA A. 1987;4(4):629‐642.
[51] YuanKY, HuangYS, YangHT, PianTHH. The inverse mapping and distortion measures for 8‐node hexahedral isoparametric elements. Computational Mechanics. 1994;14(2):189‐199. · Zbl 0804.65103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.