×

Singularity formation for radially symmetric expanding wave of compressible Euler equations. (English) Zbl 1522.35380

Summary: In this paper, for compressible Euler equations in multiple space dimensions, we prove the breakdown of classical solutions with a large class of initial data by tracking the propagation of radially symmetric expanding wave including compression. The singularity formation considered in this paper is corresponding to the finite time shock formation. We also provide some new global sup-norm estimates on velocity and density functions for classical solutions and construct the corresponding classical solutions. All results in this paper have no restriction on the size of solutions and hence are large data results.

MSC:

35Q31 Euler equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics
76J20 Supersonic flows
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
35B06 Symmetries, invariants, etc. in context of PDEs
35A09 Classical solutions to PDEs
35B44 Blow-up in context of PDEs

References:

[1] Alinhac, S., Temps de vie des solutions régulières des équations d’Euler compressibles axisymétriques en dimension deux, Invent. Math., 11 (1993), pp. 627-670. · Zbl 0798.35129
[2] Alinhac, S., Blowup for Nonlinear Hyperbolic Equations, , Birkhäuser, Boston, 1995. · Zbl 0820.35001
[3] Alinhac, S., Blowup of small data solutions for a quasilinear wave equation in two space dimensions, Ann. of Math. (2), 149 (1999), pp. 97-127 (English, with English and French summaries). · Zbl 1080.35043
[4] Alinhac, S., Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions. II, Acta Math., 182 (1999), pp. 1-23. · Zbl 0973.35135
[5] Chen, G., Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations, J. Hyperbolic Differ. Equ., 8 (2011), pp. 671-690. · Zbl 1395.76036
[6] Chen, G., Optimal time-dependent lower bound on density for classical solutions of 1-D compressible Euler equations, Indiana Univ. Math. J., 66 (2017), pp. 725-740. · Zbl 1368.35213
[7] Chen, G., Chen, G. Q., and Zhu, S. G., Formation of singularities and existence of global continuous solutions for the compressible Euler equations, SIAM J. Math. Anal., 53 (2021), pp. 6280-6325. · Zbl 1485.35293
[8] Chen, G., Pan, R. H., and Zhu, S. G., Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), pp. 2591-2614. · Zbl 1370.76157
[9] Chen, G. and Young, R., Shock-free solutions of the compressible Euler equations, Arch. Ration. Mech. Anal., 217 (2015), pp. 1265-1293. · Zbl 1317.35182
[10] Chen, G., Young, R., and Zhang, Q. T., Shock formation in the compressible Euler equations and related systems, J. Hyperbolic Differ. Equ., 10 (2013), pp. 149-172. · Zbl 1452.35137
[11] Chen, G.-Q., Remarks on spherically symmetric solutions of the compressible Euler equations, Proc Roy. Soc. Edinb. A, 127 (1997), pp. 243-259. · Zbl 0877.35100
[12] Chen, G.-Q. and Perepelitsa, M., Vanishing viscosity solutions of the compressible Euler equations with spherical symmetry and large initial data, Comm. Math. Phys., 338 (2015), pp. 771-800. · Zbl 1323.35136
[13] Chen, G.-Q. and Wang, Y., Global solutions of the compressible Euler equations with large initial data of spherical symmetry and positive far-field density, Arch. Ration. Mech. Anal., 243 (2022), pp. 1699-1771. · Zbl 1508.35048
[14] Chen, S. X. and Dong, L. M., Formation and construction of shock for p-system, Sci. China Math., 44 (2001), pp. 1139-1147. · Zbl 1054.35027
[15] Chen, S. X., Xin, Z. P., and Yin, H. C., Formation and Construction of Shock Wave for Quasilinear Hyperbolic System and its Application to Inviscid Compressible Flow, Research Report, IMS, CUHK, 1999.
[16] Christodoulou, D., The Shock Development Problem, , European Mathematical Society (EMS), Zürich, 2019. · Zbl 1445.35003
[17] Christodoulou, D. and Miao, S., Compressible Flow and Euler’s Equations, , International Press, Somerville, MA; Higher Education Press, Beijing, 2014. · Zbl 1329.76002
[18] Courant, R. and Friedrichs, K. O., Supersonic Flow and Shock Waves, Interscience Publishers, New York, 1948. · Zbl 0041.11302
[19] Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, , Springer-Verlag, Berlin, 2000. · Zbl 0940.35002
[20] Jenssen, H. K., On exact solutions of rarefaction-rarefaction interactions in compressible isentropic flow, J. Math. Fluid Mech., 19 (2017), pp. 685-708. · Zbl 1395.35166
[21] Jenssen, H. K. and Johnson, A. A., New Self-similar Euler Flows: Gradient Catastrophe without Shock Formation, preprint, arXiv:2205.15876, 2022.
[22] Jenssen, H. K. and Tsikkou, C., Amplitude blowup in radial isentropic Euler flow, SIAM J. Math. Anal., 80 (2020), pp. 2472-2495. · Zbl 1456.35046
[23] John, F., Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math., 27 (1974), pp. 377-405. · Zbl 0302.35064
[24] Klainerman, S., Long time behaviour of solutions to nonlinear wave equations, in Nonlinear Variational Problems (Isola d’Elba, 1983), , Pitman, Boston, 1985, pp. 65-72. · Zbl 0578.35059
[25] Kong, D. X., Formation and propagation of singularities for \(2\times 2\) quasilinear hyperbolic systems, Trans. Amer. Math. Soc., 354 (2002), pp. 3155-3179. · Zbl 1003.35079
[26] Lax, P. D., Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Mathematical Phys., 5 (1964), pp. 611-613. · Zbl 0135.15101
[27] LeFloch, P. G. and Westdickenberg, M., Finite energy solutions to the isentropic Euler equations with geometric effects, J. Math. Pures Appl. (9), 88 (2007), pp. 389-429 (English, with English and French summaries). · Zbl 1188.35150
[28] Lei, Z., Du, Y., and Zhang, Q. T., Singularities of solutions to compressible Euler equations with vacuum, Math. Res. Lett., 20 (2013), pp. 41-50. · Zbl 1284.35329
[29] (Daqian) Li, T., Global Classical Solutions for Quasilinear Hyperbolic System, John Wiley and Sons, New York, 1994. · Zbl 0841.35064
[30] (Daqian) Li, T., Zhou, Y., and Kong, D. X., Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal. Theory Methods Appl., 28 (1997), pp. 1299-1332. · Zbl 0874.35068
[31] Lin, L. W., On the vacuum state for the equations of isentropic gas dynamics, J. Math. Anal. Appl., 121 (1987), pp. 406-425. · Zbl 0644.76084
[32] Liu, T. P., Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations, J. Differential Equations, 33 (1979), pp. 92-111. · Zbl 0379.35048
[33] Luk, J. and Speck, J., Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity, Invent. Math., 214 (2018), pp. 1-169. · Zbl 1409.35142
[34] Makino, T., Mizohata, K., and Ukai, S., The global weak solutions of compressible Euler equation with spherical symmetry, Japan J. Indust. Appl. Math., 9 (1992), pp. 431-449. · Zbl 0761.76085
[35] Makino, T., Mizohata, K., and Ukai, S., Global weak solutions of the compressible Euler equation with spherical symmetry. II, Japan J. Indust. Appl. Math., 11 (1994), pp. 417-426. · Zbl 0812.35101
[36] Makino, T. and Takeno, S., Initial-boundary value problem for the spherically symmetric motion of isentropic gas, Japan J. Indust. Appl. Math., 11 (1994), pp. 171-183. · Zbl 0797.76077
[37] Makino, T., Ukai, S., and Kawashima, S., Sur la solution à support compact de equations d’Euler compressible, Japan J. Appl. Math., 33 (1986), pp. 249-257. · Zbl 0637.76065
[38] Merle, F., Raphael, P., Rodnianski, I., and Szeftel, J., On the implosion of a compressible fluid I: Smooth self-similar inviscid profiles, Ann. of Math. (2), 196 (2022), pp. 567-778, doi:10.4007/annals.2022.196.2.3. · Zbl 1497.35384
[39] Rammaha, M. A., Formation of singularities in compressible fluids in two space dimension, Proc. Amer. Math. Soc., 107 (1989), pp. 705-714. · Zbl 0692.35015
[40] Sideris, T. C., Formation of singulirities in three-dimensional compressible fluids, Comm. Math. Phys., 101 (1985), pp. 475-487. · Zbl 0606.76088
[41] Sideris, T. C., Delay singularity formation in 2D compressible flow, Amer. J. Math., 119 (1997), pp. 371-422. · Zbl 0876.35091
[42] Sideris, T. C., Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum, Arch. Ration. Mech. Anal., 225 (2017), pp. 141-176. · Zbl 1367.35115
[43] Stokes, G. G., On a difficulty in the theory of sound, Philos. Mag., 33 (1848), pp. 349-356.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.