×

Global solutions of the compressible Euler equations with large initial data of spherical symmetry and positive far-field density. (English) Zbl 1508.35048

Summary: We are concerned with the global existence theory for spherically symmetric solutions of the multidimensional compressible Euler equations with large initial data of positive far-field density so that the total initial-energy is unbounded. The central feature of the solutions is the strengthening of waves as they move radially inward toward the origin. For the large initial data of positive far-field density, various examples have shown that the spherically symmetric solutions of the Euler equations blow up near the origin at a certain time. A fundamental unsolved problem is whether the density of the global solution would form concentration to become a measure near the origin for the case when the total initial-energy is unbounded and the wave propagation is not at finite speed starting initially. In this paper, we establish a global existence theory for spherically symmetric solutions of the compressible Euler equations with large initial data of positive far-field density and relative finite-energy. This is achieved by developing a new approach via adapting a class of degenerate density-dependent viscosity terms, so that a rigorous proof of the vanishing viscosity limit of global weak solutions of the Navier-Stokes equations with the density-dependent viscosity terms to the corresponding global solution of the Euler equations with large initial data of spherical symmetry and positive far-field density can be obtained. One of our main observations is that the adapted class of degenerate density-dependent viscosity terms not only includes the viscosity terms for the Navier-Stokes equations for shallow water (Saint Venant) flows but also, more importantly, is suitable to achieve the key objective of this paper. These results indicate that concentration is not formed in the vanishing viscosity limit for the Navier-Stokes approximations constructed in this paper even when the total initial-energy is unbounded, though the density may blow up near the origin at certain time and the wave propagation is not at finite speed.

MSC:

35Q31 Euler equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35B44 Blow-up in context of PDEs
35D30 Weak solutions to PDEs
35B06 Symmetries, invariants, etc. in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Bianchini, S.; Bressan, A., Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. Math. (2), 161, 223-342 (2005) · Zbl 1082.35095
[2] Bresch, D.; Desjardins, B., On viscous shallow-water equations (Saint-Venant model) and the quasi-geostrophic limit, C. R. Math. Acad. Sci. Paris, 335, 1079-1084 (2002) · Zbl 1032.76012
[3] Bresch, D., Desjardins, B.: Some diffusive capillary models of Korteweg type. C. R. Math. Acad. Sci. Paris, Section Mécanique332, 881-886, 2004 · Zbl 1386.76070
[4] Bresch, D.; Desjardins, B., On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87, 57-90 (2007) · Zbl 1122.35092
[5] Bresch, D.; Desjardins, B.; Lin, CK, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Diff. Eqs., 28, 843-868 (2003) · Zbl 1106.76436
[6] Bresch, D.; Desjardins, B.; Gerard-Varet, D., On compressible Navier-Stokes equations with density dependent viscosities in bounded domains, J. Math. Pures Appl., 87, 227-235 (2007) · Zbl 1121.35093
[7] Bresch, D.; Jabin, P-E, Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. Math., 188, 577-684 (2018) · Zbl 1405.35133
[8] Bressan, A.; Yang, T., On the convergence rate of vanishing viscosity approximations, Comm. Pure Appl. Math., 57, 1075-1109 (2004) · Zbl 1060.35109
[9] Bressan, A.; Huang, F.; Wang, Y.; Yang, T., On the convergence rate of vanishing viscosity approximations for nonlinear hyperbolic systems, SIAM J. Math. Anal., 44, 3537-3563 (2012) · Zbl 1264.35017
[10] Chen, G.-Q.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Sci. 6B, 75-120 (1986) (in English); 8A, 243-276 (1988) (in Chinese). · Zbl 0643.76086
[11] Chen, G.-Q.: Remarks on R. J. DiPerna’s paper: Convergence of the viscosity method for isentropic gas dynamics [Commun. Math. Phys. 91 (1983), 1-30]. Proc. Amer. Math. Soc. 125, 2981-2986 (1997) · Zbl 0888.35066
[12] Chen, G-Q, Remarks on spherically symmetric solutions of the compressible Euler equations, Proc. R. Soc. Edinburgh, 127, 243-259 (1997) · Zbl 0877.35100
[13] Chen, G.-Q.: The compensated compactness method and the system of isentropic gas dynamics. Lecture Notes, Preprint MSRI-00527-91, Berkeley, October (1990).
[14] Chen, G.-Q., Feldman, M.: The Mathematics of Shock Reflection-diffraction and Von Neumann’s Conjectures. Research Monograph, Annals of Mathematics Studies, 197, Princeton University Press, Princeton (2018). · Zbl 1403.35001
[15] Chen, G-Q; Perepelista, M., Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow, Comm. Pure Appl. Math., 63, 1469-1504 (2010) · Zbl 1205.35188
[16] Chen, G-Q; Perepelista, M., Shallow water equations: viscous solutions and inviscid limit, Z. Angew. Math. Phys., 63, 1067-1084 (2012) · Zbl 1388.35124
[17] Chen, G-Q; Perepelista, M., Vanishing viscosity solutions of the compressible Euler equations with spherical symmetry and large initial data, Commun. Math. Phys., 338, 771-800 (2015) · Zbl 1323.35136
[18] Chen, G-Q; Schrecker, M., Vanishing viscosity approach to the compressible Euler equations for transonic nozzle and spherically symmetric flows, Arch. Ration. Mech. Anal., 229, 1239-1279 (2018) · Zbl 1406.35245
[19] Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience Publishers Inc., New York (1948) · Zbl 0041.11302
[20] Dafermos, CM, Hyperbolic Conservation Laws in Continuum Physics (2010), Berlin: Springer, Berlin · Zbl 1196.35001
[21] Ding, X., On a lemma of DiPerna and Chen, Acta Math. Sci., 26B, 188-192 (2006) · Zbl 1152.35431
[22] Ding, X.,Chen, G.-Q.,Luo, P.: Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (I)-(II). Acta Math. Sci. 5B, 483-500 (1985), 501-540 (in English); 7A (1987), 467-480; 8A, 61-94 (1989) (in Chinese); Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics. Commun. Math. Phys. 121, 63-84 (1989). · Zbl 0689.76022
[23] DiPerna, RJ, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys., 91, 1-30 (1983) · Zbl 0533.76071
[24] DiPerna, RJ, Convergence of approximate solutions to conservation laws, Arch. Ration. Mech. Anal., 82, 27-70 (1983) · Zbl 0519.35054
[25] Feireisl, E.; Novotny, A.; Petzeltová, H., On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3, 358-392 (2001) · Zbl 0997.35043
[26] Gilbarg, D., The existence and limit behavior of the one-dimensional shock layer, Am. J. Math., 73, 256-274 (1951) · Zbl 0044.21504
[27] Guès, C.M.I.O., Mètivier, G., Williams, M., Zumbrun, K.: Navier-Stokes regularization of multidimensional Euler shocks. Ann. Sci. École Norm. Sup. (4)39, 75-175, 2006 · Zbl 1173.35082
[28] Guderley, G., Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw., der Zylinderachse. Luftfahrtforschung, 19, 9, 302-311 (1942) · Zbl 0061.45804
[29] Guo, ZH; Jiu, QS; Xin, ZP, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39, 1402-1427 (2008) · Zbl 1151.35071
[30] Hoff, D., Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states, Z. Angew. Math. Phys., 49, 774-785 (1998) · Zbl 0913.35031
[31] Hoff, D.; Liu, T-P, The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data, Indiana Univ. Math. J., 38, 861-915 (1989) · Zbl 0674.76047
[32] Huang, FM; Wang, Z., Convergence of viscosity solutions for isothermal gas dynamics, SIAM J. Math. Anal., 34, 595-610 (2002) · Zbl 1036.35129
[33] Hugoniot, PH, Mèmoire sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits. 2e Partie., J. École Polytechnique Paris, 58, 1-125 (1889) · JFM 21.0958.01
[34] Jiang, S.; Zhang, P., On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Commun. Math. Phys., 215, 559-581 (2001) · Zbl 0980.35126
[35] Kanel, Ya.: On a model system of equations of one-dimensional gas motion. Diff. Urav.4, 721-734, 1968 (in Russian) · Zbl 0164.40803
[36] Lax, P. D.: Shock wave and entropy. In: Contributions to Functional Analysis, ed. E. A. Zarantonello, pp. 603-634, Academic Press: New York (1971). · Zbl 0268.35014
[37] LeFloch, P.; Westdickenberg, M., Finite energy solutions to the isentropic Euler equations with geometric effects, J. Math. Pures Appl., 88, 386-429 (2007) · Zbl 1188.35150
[38] Li, T.; Wang, D., Blowup phenomena of solutions to the Euler equations for compressible fluid flow, J. Diff. Eqs., 221, 91-101 (2006) · Zbl 1083.76051
[39] Lions, P-L, Mathematical Topics in Fluid Dynamics, 2: Compressible Models (1998), Oxford: Oxford Science Publication, Oxford · Zbl 0908.76004
[40] Lions, P-L; Perthame, B.; Souganidis, PE, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 49, 599-638 (1996) · Zbl 0853.76077
[41] Lions, P-L; Perthame, B.; Tadmor, E., Kinetic formulation of the isentorpic gas dynamics and p-systems, Commun. Math. Phys., 163, 415-431 (1994) · Zbl 0799.35151
[42] Liu, T-P; Xin, Z.; Yang, T., Vacuum states for compressible flow, Discrete Contin. Dyn. Syst., 4, 1-32 (1998) · Zbl 0970.76084
[43] Makino, T.; Takeno, S., Initial boundary value problem for the spherically symmetric motion of isentropic gas, Japan J. Ind. Appl. Math., 11, 171-183 (1994) · Zbl 0797.76077
[44] Mellet, A.; Vasseur, A., On the barotropic compressible Navier-Stokes equation, Commun. Partial Diff. Eqs., 32, 431-452 (2007) · Zbl 1149.35070
[45] Merle, F.,Raphael, P.,Rodnianski, I.,Szeftel, J.: On the implosion of a three dimensional compressible fluid. arXiv Preprint, arXiv:191211009v2, (2020)
[46] Morawetz, C.: An alternative proof of DiPerna’s theorem. Comm. Pure Appl. Math.44, 1081-1090, 1991 · Zbl 0763.35056
[47] Murat, F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat, 5, 489-507 (1978) · Zbl 0399.46022
[48] Perthame, B.; Tzavaras, A., Kinetic formulation for systems of two conservation laws and elastodynamics, Arch. Ration. Mech. Anal., 155, 1-48 (2000) · Zbl 0980.35092
[49] Plotnikov, PI; Weigant, W., Isothermal Navier-Stokes equations and Radon transform, SIAM J. Math. Anal., 47, 626-653 (2015) · Zbl 1323.35134
[50] Rankine, WJM, On the thermodynamic theory of waves of finite longitudinal disturbance, Philos. Trans. R. Soc. Lond., 1870, 277-288 (1960) · JFM 02.0832.01
[51] Rayleigh, L. (J. W. Strutt), Aerial plane waves of finite amplitude. Proc. R. Soc. Lond., 84A, 247-284 (1910) · JFM 41.0846.02
[52] Rosseland, S., The Pulsation Theory of Variable Stars (1964), New York: Dover Publications Inc., New York · Zbl 0031.38103
[53] Schrecker, M., Spherically symmetric solutions of the multidimensional compressible, isentropic Euler equations, Trans. Am. Math. Soc., 373, 727-746 (2020) · Zbl 1431.35116
[54] Serre, D.: La compacité par compensation pour les systèmes hyperboliques non linéaires de deux èquations à une dimension d’espace. J. Math. Pures Appl. (9)65, 423-468, 1986 · Zbl 0601.35070
[55] Slemrod, M., Resolution of the spherical piston problem for compressible isentropic gas dynamics via a self-similar viscous limit, Proc. R. Soc. Edinburgh, 126A, 1309-1340 (1996) · Zbl 0866.76075
[56] Stokes, G. G. : On a difficulty in the theory of sound. [Philos. Mag. 33 (1848), 349-356; Mathematical and Physical Papers, Vol. II, Cambridge Univ. Press: Cambridge, 1883]. Classic Papers in Shock Compression Science, 71-79. High-Pressure Shock Compression of Condensed Matter. Springer: New York, (1998).
[57] Tartar, L.: Compensated compactness and applications to partial differential equations. In: Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Herriot-Watt Symposium, Vol. 4, R. J. Knops ed., Pitman Press, (1979). · Zbl 0437.35004
[58] Vasseur, A.; Yu, C., Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206, 935-974 (2016) · Zbl 1354.35115
[59] Whitham, GB, Linear and Nonlinear Waves (1974), New York: Wiley, New York · Zbl 0373.76001
[60] Xin, ZP, Zero dissipation limit to rarefaction waves for the one-dimentional Navier-Stokes equations of compressible isentropic gases, Comm. Pure Appl. Math., 46, 621-665 (1993) · Zbl 0804.35108
[61] Yang, T., A functional integral approach to shock wave solutions of Euler equations with spherical symmetry I, Commun. Math. Phys., 171, 607-638 (1995) · Zbl 0840.35062
[62] Yang, T., A functional integral approach to shock wave solutions of Euler equations with spherical symmetry II, J. Diff. Eqs., 130, 162-178 (1996) · Zbl 0866.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.