×

Amplitude blowup in radial isentropic Euler flow. (English) Zbl 1456.35046

The authors consider inviscid isentropic flow described by the compressible Euler system in 2 or 3 spatial dimensions. An additional assumption of symmetry is made: velocity is radial, and all variables depend on the distance to the origin. The aim is to prove the possibility of unbounded solutions due to wave focusing possible in several spatial dimensions.

MSC:

35B44 Blow-up in context of PDEs
35L45 Initial value problems for first-order hyperbolic systems
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q31 Euler equations
Full Text: DOI

References:

[1] S. Atzeni and J. Meyer-ter Vehn, The Physics of Inertial Fusion, Internat. Ser. Monogr. Phys. 125, Oxford University Press, Oxford, 2004.
[2] G.-Q. Chen and T.-H. Li, Global entropy solutions in \(l^\infty\) to the Euler equations and Euler-Poisson equations for isothermal fluids with spherical symmetry, Methods Appl. Anal., 10 (2003), pp. 215-243. · Zbl 1059.35094
[3] G.-Q. G. Chen and M. Perepelitsa, Vanishing viscosity solutions of the compressible Euler equations with spherical symmetry and large initial data, Comm. Math. Phys., 338 (2015), pp. 771-800. · Zbl 1323.35136
[4] G.-Q. G. Chen and M. R. I. Schrecker, Vanishing viscosity approach to the compressible Euler equations for transonic nozzle and spherically symmetric flows, Arch. Ration. Mech. Anal., 229 (2018), pp. 1239-1279, https://doi.org/10.1007/s00205-018-1239-z. · Zbl 1406.35245
[5] R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Springer-Verlag, Berlin, 1976. Reprinting of the 1948 original; Applied Mathematical Sciences, Vol. 21. · Zbl 0365.76001
[6] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, Grundlehren Math. Wiss. 325 [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 4th ed., 2016, https://doi.org/10.1007/978-3-662-49451-6. · Zbl 1364.35003
[7] J. Duderstadt and G. Moses, Inertial Confinement Fusion, Wiley, New York, 1982.
[8] G. Guderley, Starke kugelige und zylindrische verdichtungsstösse in der nähe des kugelmittelpunktes bzw. der zylinderachse, Luftfahrtforschung, 19 (1942), pp. 302-311. · Zbl 0061.45804
[9] D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J., 41 (1992), pp. 1225-1302. · Zbl 0765.35033
[10] H. K. Jenssen and C. Tsikkou, On similarity flows for the compressible Euler system, J. Math. Phys., 59 (2018), 121507, https://doi.org/10.1063/1.5049093. · Zbl 1404.76227
[11] H. K. Jenssen and C. Tsikkou, Multi-d isothermal Euler flow: Existence of unbounded radial similarity solutions, Phys. D., 410 (2020), 132511, https://doi.org/10.1016/j.physd.2020.132511. · Zbl 1490.35275
[12] R. B. Lazarus, Self-similar solutions for converging shocks and collapsing cavities, SIAM J. Numer. Anal., 18 (1981), pp. 316-371. · Zbl 0478.76082
[13] S. Pfalzner, An Introduction to Inertial Confinement Fusion, Series in Plasma Physics, CRC Press, Boca Raton, FL, 2006.
[14] M. R. I. Schrecker, Spherically symmetric solutions of the multidimensional, compressible, isentropic Euler equations, Trans. Amer. Math. Soc., 373 (2020), pp. 727-746, https://doi.org/10.1090/tran/7980. · Zbl 1431.35116
[15] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, “Mir,” Moscow, 1982. Translated from the Russian by V. I. Kisin. · Zbl 0526.76002
[16] K. P. Stanyukovich, Unsteady Motion of Continuous Media, Translation edited by Maurice Holt; literal translation by J. George Adashko, Pergamon Press, New York, 1960.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.