×

Shock formation in the compressible Euler equations and related systems. (English) Zbl 1452.35137

Summary: We prove shock formation results for the compressible Euler equations and related systems of conservation laws in one space dimension, or three dimensions with spherical symmetry. We establish an \(L^{\infty}\) bound for \(C^{1}\) solutions of the one-dimensional (1D) Euler equations, and use this to improve recent shock formation results of the authors. We prove analogous shock formation results for 1D magnetohydrodynamics (MHD) with orthogonal magnetic field, and for compressible flow in a variable area duct, which has as a special case spherically symmetric three-dimensional (3D) flow on the exterior of a ball.

MSC:

35Q31 Euler equations
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
76W05 Magnetohydrodynamics and electrohydrodynamics

References:

[1] Bressan A., Hyperbolic Systems of Conservation Laws: The 1-Dimensional Cauchy Problem (2000) · Zbl 0997.35002
[2] DOI: 10.1142/S0219891611002536 · Zbl 1395.76036 · doi:10.1142/S0219891611002536
[3] DOI: 10.1007/s00205-012-0497-4 · Zbl 1287.76159 · doi:10.1007/s00205-012-0497-4
[4] DOI: 10.1016/j.jde.2011.09.004 · Zbl 1237.35119 · doi:10.1016/j.jde.2011.09.004
[5] Courant R., Supersonic Flow and Shock Waves (1948) · Zbl 0041.11302
[6] DOI: 10.1007/978-3-642-04048-1 · Zbl 1196.35001 · doi:10.1007/978-3-642-04048-1
[7] DOI: 10.1137/S0036139902405249 · Zbl 1063.35115 · doi:10.1137/S0036139902405249
[8] DOI: 10.1137/S0036141099352339 · Zbl 0969.35091 · doi:10.1137/S0036141099352339
[9] DOI: 10.1142/S021989160400024X · Zbl 1066.35057 · doi:10.1142/S021989160400024X
[10] DOI: 10.1002/cpa.3160270307 · Zbl 0302.35064 · doi:10.1002/cpa.3160270307
[11] DOI: 10.1063/1.1704154 · Zbl 0135.15101 · doi:10.1063/1.1704154
[12] DOI: 10.1137/1.9781611970562 · doi:10.1137/1.9781611970562
[13] Li T.-T., Physics and Partial Differential Equations 1 (1997)
[14] DOI: 10.1016/0362-546X(95)00228-N · Zbl 0874.35068 · doi:10.1016/0362-546X(95)00228-N
[15] DOI: 10.1006/jmaa.1997.5389 · Zbl 0880.35096 · doi:10.1006/jmaa.1997.5389
[16] DOI: 10.1016/S0252-9602(06)60079-9 · Zbl 1147.35333 · doi:10.1016/S0252-9602(06)60079-9
[17] DOI: 10.1016/0022-0396(79)90082-2 · Zbl 0379.35048 · doi:10.1016/0022-0396(79)90082-2
[18] DOI: 10.1016/S0362-546X(97)00619-6 · Zbl 0923.35123 · doi:10.1016/S0362-546X(97)00619-6
[19] DOI: 10.1007/978-1-4612-1116-7 · doi:10.1007/978-1-4612-1116-7
[20] DOI: 10.1090/S0002-9939-1989-0984811-5 · doi:10.1090/S0002-9939-1989-0984811-5
[21] DOI: 10.1007/BF01210741 · Zbl 0606.76088 · doi:10.1007/BF01210741
[22] Smoller J., Shock Waves and Reaction-Diffusion Equations (1982) · Zbl 0508.35002
[23] Temple B., Methods Appl. Anal. 16 pp 341– (2009)
[24] R. Young, Evolution Equations, eds. R. Picard, M. Reissig and W. Zajaczkowski (Banach Center, 2001) pp. 237–252.
[25] DOI: 10.4310/CMS.2003.v1.n2.a4 · Zbl 1082.35102 · doi:10.4310/CMS.2003.v1.n2.a4
[26] DOI: 10.1007/s00205-005-0370-9 · Zbl 1085.35100 · doi:10.1007/s00205-005-0370-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.