×

On exact solutions of rarefaction-rarefaction interactions in compressible isentropic flow. (English) Zbl 1395.35166

Summary: Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function \(p(\rho)=a^2\rho^\gamma \) with \(\gamma >1\). The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables \(t\), \(x\) as functions of the Riemann invariants \(r\), \(s\) within the interaction region. It is well known that \(t(r,s)\) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for \(x(r,s)\) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit \(t\)-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if \(\gamma >3\). We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate \(O(1)/t\).

MSC:

35Q35 PDEs in connection with fluid mechanics
35C05 Solutions to PDEs in closed form
35L65 Hyperbolic conservation laws
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)

Software:

DLMF
Full Text: DOI

References:

[1] Chen, G., Pan, R., Zhu, S.: Singularity formation for compressible euler equations. Preprint available from arXiv:1408.6775 · Zbl 1370.76157
[2] Copson, E.T.: On the riemann-green function. Arch. Rational Mech. Anal. 1, 324-348 (1958) · Zbl 0081.08901 · doi:10.1007/BF00298013
[3] Courant, R., Friedrichs, K.O.: Supersonic flow and shock waves. Springer-Verlag, New York (1976). Reprinting of the 1948 original; Applied Mathematical Sciences, vol. 21 · Zbl 0365.76001
[4] Courant, R., Hilbert, D.: Methods of mathematical physics. vol. ii. Wiley Classics Library, Wiley, New York (1989). Partial differential equations; Reprint of the 1962 original; A Wiley-Interscience Publication · Zbl 0729.35001
[5] Darboux, G.: Leçons sur la théorie générale des surfaces. i, ii. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux (French) (1993). Généralités. Coordonnées curvilignes. Surfaces minima. [Generalities. Curvilinear coordinates. Minimum surfaces]; Les congruences et les équations linéaires aux dérivées partielles. Les lignes tracées sur les surfaces. [Congruences and linear partial differential equations. Lines traced on surfaces]; Reprint of the second (1914) edition (I) and the second (1915) edition (II); Cours de Géométrie de la Faculté des Sciences. [Course on Geometry of the Faculty of Science] · Zbl 0357.35016
[6] Xia Xi, D., Gui Qiang, C., Pei Zhu, P.Z.: Convergence of the fractional step lax-friedrichs scheme and godunov scheme for the isentropic system of gas dynamics. Comm. Math. Phys. 121(1), 63-84 (1989) · Zbl 0689.76022 · doi:10.1007/BF01218624
[7] DiPerna, R.J.: Existence in the large for quasilinear hyperbolic conservation laws. Arch. Rational Mech. Anal. 52, 244-257 (1973) · Zbl 0268.35066
[8] DiPerna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Comm. Math. Phys. 91(1), 1-30 (1983) · Zbl 0533.76071
[9] Glimm, James: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 697-715 (1965) · Zbl 0141.28902 · doi:10.1002/cpa.3160180408
[10] Gradshteyn, I.S.: Table of integrals, series, and products, 6 edn. Academic Press, Inc., San Diego, CA. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger (2000) · Zbl 0981.65001
[11] Lin, L.W.: On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal. Appl. 121(2), 406-425 (1987). doi:10.1016/0022-247X(87)90253-8 · Zbl 0644.76084 · doi:10.1016/0022-247X(87)90253-8
[12] Liu, T.P.: Initial-boundary value problems for gas dynamics. Arch. Rational Mech. Anal. 64(2), 137-168 (1977) · Zbl 0357.35016 · doi:10.1007/BF00280095
[13] Monroe, H.: The rectilinear motion of a gas. Am. J. Math. 65, 391-407 (1943) · Zbl 0063.03810 · doi:10.2307/2371964
[14] Nishida, Takaaki: Global solution for an initial boundary value problem of a quasilinear hyperbolic system. Proc. Japan Acad. 44, 642-646 (1968) · Zbl 0167.10301 · doi:10.3792/pja/1195521083
[15] Nishida, T., Smoller, J.A.: Solutions in the large for some nonlinear hyperbolic conservation laws. Comm. Pure Appl. Math. 26, 183-200 (1973) · Zbl 0267.35058 · doi:10.1002/cpa.3160260205
[16] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Tech- nology, Washington, DC; Cambridge University Press, Cambridge (2010). With 1 CD-ROM (Windows, Macintosh and UNIX) · Zbl 1198.00002
[17] Polyanin, A.D., Manzhirov, A.V.: Handbook of integral equations, 2nd edn. Chapman and Hall/CRC, Boca Raton, FL (2008) · Zbl 1154.45001 · doi:10.1201/9781420010558
[18] Riemann, B.: Collected papers. Kendrick Press, Heber City, UT (2004). Translated from the 1892 German edition by Roger Baker, Charles Christenson and Henry Orde · Zbl 1101.01013
[19] Riemann, B.: The propagation of planar air waves of finite amplitude [abh. ges. wiss. göttingen 8, : 43-65], Classic papers in shock compression science, High-press. Shock Compression Condens. Matter, Springer, New York 1998, 109-128 (1860)
[20] Smoller, J.: Shock waves and reaction-diffusion equations, 2 edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258. Springer-Verlag, New York (1994) · Zbl 0807.35002
[21] Blake, J.: Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics. J. Differ. Equ. 41(1), 96-161 (1981). doi:10.1016/0022-0396(81)90055-3 · Zbl 0476.76070 · doi:10.1016/0022-0396(81)90055-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.