×

Brain webs for brane webs. (English) Zbl 1510.81103

The subject of the paper is the study of five dimensional superconformal field theories. The main proposal consists in using techniques from Machine Learning as tools to classify such theories. From the point of view of String Theory, five dimensional superconformal theories can be associated to Brane webs. They can be constructed physically using certain configurations of intersecting D-branes. Then a certain projection of such configurations defines a web on a plane. Such a description is however redundant. Different webs related by a certain action of \(SL(2,C)\) or a set of moves, known as Hanany-Witten moves, describe physically equivalent theories. The classification problem then consists in classifying equivalence classes of webs up to this equivalence relations. The authors attempt to tackle this problem using Machine Learning.
More precisely, the authors study configurations of \((p,q)\) 5-branes, where \(p\) and \(q\) are units of charge under the RR and NSNS 2-forms of type IIB String Theory respectively. Such branes can end on \([p,q]\) 7-branes, which then play the role of external legs in the brane web. The redundancy of such webs is characterized by the action of \(SL(2,C)\) on each \((p,q)\) vector, and by the Hanany-Witten moves, encoded in a certain monodromy matrix \(M_{p,q}\). The full configuration can be parametrized by a web matrix.
Interestingly, the problem of the classification of such webs contains the sub-problem of classifying 7-brane configurations, without any 5-brane. Such a problem was addressed in [O. DeWolfe et al., Adv. Theor. Math. Phys. 3, No. 6, 1785–1833 (1999; Zbl 0967.81051)], where it was conjectured that inequivalent sets of 7-branes are characterized by the total monodromy matrix and by a certain charge invariant. However by inspecting explicit examples of brane configurations, the authors of the present paper find out that such a characterization is only necessary but not sufficients for two 7-brane configurations to be inequivalent. This leads to two notions of equivalence: strong (up to \(SL(2,C)\) action and Hanany-Witten moves) and weak (with the same invariants).
The authors use Machine Learning techniques to understand the classification problem, by training a Siamese Neural Network (which consists of two or more identical sub-networks) to determine if two given webs are equivalent or not. They construct an appropriate dataset and train the network accordingly. They find that the network performs much better with the notion of weak equivalence. They conclude that the true set of classifiers is much subtler that previously thought. The results are also strengthened by an independent study using topological data analysis.
The paper proposes to use Machine Learning techniques to understand a certain physical problem. Such problem can be reduced to an interesting algebraic problem. Regardless of its physical origin, this is an interesting problem on its own, with several (quite difficult) ramifications. The paper is very clear and not much background in string theory is needed to understand its main points. Researchers with interests in Machine Learning and its applications will find a lot of open problems to address.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
68T07 Artificial neural networks and deep learning

Citations:

Zbl 0967.81051

References:

[1] Seiberg, N., Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B, 388, 753-760 (1996)
[2] Morrison, D. R.; Seiberg, N., Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B, 483, 229-247 (1997) · Zbl 0925.81228
[3] Aharony, O.; Hanany, A., Branes, superpotentials and superconformal fixed points, Nucl. Phys. B, 504, 239-271 (1997) · Zbl 0979.81591
[4] Aharony, O.; Hanany, A.; Kol, B., Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, J. High Energy Phys., 01, Article 002 pp. (1998)
[5] Jefferson, P.; Kim, H.-C.; Vafa, C.; Zafrir, G., Towards classification of 5d SCFTs: single gauge node · Zbl 07902465
[6] Bhardwaj, L.; Zafrir, G., Classification of 5d \(\mathcal{N} = 1\) gauge theories, J. High Energy Phys., 12, Article 099 pp. (2020) · Zbl 1457.81117
[7] Apruzzi, F.; Lawrie, C.; Lin, L.; Schäfer-Nameki, S.; Wang, Y.-N., Fibers add flavor, part I: classification of 5d SCFTs, flavor symmetries and BPS states, J. High Energy Phys., 11, Article 068 pp. (2019) · Zbl 1429.81066
[8] Apruzzi, F.; Lawrie, C.; Lin, L.; Schäfer-Nameki, S.; Wang, Y.-N., Fibers add flavor, part II: 5d SCFTs, gauge theories, and dualities, J. High Energy Phys., 03, Article 052 pp. (2020) · Zbl 1435.81177
[9] Bhardwaj, L., Flavor symmetry of 5d SCFTs. Part I. General setup, J. High Energy Phys., 09, Article 186 pp. (2021) · Zbl 1472.81216
[10] Bhardwaj, L., Flavor symmetry of 5d SCFTs. Part II. Applications, J. High Energy Phys., 04, Article 221 pp. (2021)
[11] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B, 492, 152-190 (1997) · Zbl 0996.58509
[12] He, Y.-H., Deep-learning the landscape
[13] He, Y.-H., Machine-learning the string landscape, Phys. Lett. B, 774, 564-568 (2017)
[14] Krefl, D.; Seong, R.-K., Machine learning of Calabi-Yau volumes, Phys. Rev. D, 96, 6, Article 066014 pp. (2017)
[15] Ruehle, F., Evolving neural networks with genetic algorithms to study the String Landscape, J. High Energy Phys., 08, Article 038 pp. (2017) · Zbl 1381.83128
[16] Carifio, J.; Halverson, J.; Krioukov, D.; Nelson, B. D., Machine learning in the String Landscape, J. High Energy Phys., 09, Article 157 pp. (2017) · Zbl 1382.81155
[17] DeWolfe, O.; Hauer, T.; Iqbal, A.; Zwiebach, B., Uncovering the symmetries on [p,q] seven-branes: beyond the Kodaira classification, Adv. Theor. Math. Phys., 3, 1785-1833 (1999) · Zbl 0967.81051
[18] Ashmore, A.; He, Y.-H.; Ovrut, B. A., Machine learning Calabi-Yau metrics, Fortschr. Phys., 68, 9, Article 2000068 pp. (2020) · Zbl 1537.53003
[19] Douglas, M. R.; Lakshminarasimhan, S.; Qi, Y., Numerical Calabi-Yau metrics from holomorphic networks
[20] Jejjala, V.; Mayorga Pena, D. K.; Mishra, C., Neural network approximations for Calabi-Yau metrics · Zbl 1522.83001
[21] Anderson, L. B.; Gerdes, M.; Gray, J.; Krippendorf, S.; Raghuram, N.; Ruehle, F., Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning, J. High Energy Phys., 05, Article 013 pp. (2021) · Zbl 1466.83111
[22] Halverson, J.; Nelson, B.; Ruehle, F., Branes with brains: exploring string vacua with deep reinforcement learning, J. High Energy Phys., 06, Article 003 pp. (2019) · Zbl 1416.83125
[23] Brodie, C. R.; Constantin, A.; Deen, R.; Lukas, A., Machine learning line bundle cohomology, Fortschr. Phys., 68, 1, Article 1900087 pp. (2020) · Zbl 1535.32024
[24] Krippendorf, S.; Lust, D.; Syvaeri, M., Integrability ex machina, Fortschr. Phys., 69, 7, Article 2100057 pp. (2021) · Zbl 1537.37104
[25] Bao, J.; Franco, S.; He, Y.-H.; Hirst, E.; Musiker, G.; Xiao, Y., Quiver mutations, Seiberg duality and machine learning, Phys. Rev. D, 102, 8, Article 086013 pp. (2020)
[26] Bao, J.; He, Y.-H.; Hirst, E.; Hofscheier, J.; Kasprzyk, A.; Majumder, S., Hilbert series, machine learning, and applications to physics, Phys. Lett. B, 827, Article 136966 pp. (2022) · Zbl 1487.81035
[27] Chen, H.-Y.; He, Y.-H.; Lal, S.; Zaz, M. Z., Machine learning etudes in conformal field theories
[28] Larfors, M.; Lukas, A.; Ruehle, F.; Schneider, R., Learning size and shape of Calabi-Yau spaces
[29] Gukov, S.; Halverson, J.; Ruehle, F.; Sułkowski, P., Learning to unknot, Mach. Learn. Sci. Technol., 2, 2, Article 025035 pp. (2021)
[30] He, Y.-H., Machine-learning mathematical structures
[31] He, Y.-H.; Hirst, E.; Peterken, T., Machine-learning dessins d’enfants: explorations via modular and Seiberg-Witten curves, J. Phys. A, 54, 7, Article 075401 pp. (2021) · Zbl 1519.14058
[32] Bao, J.; He, Y.-H.; Hirst, E., Neurons on amoebae · Zbl 1519.14063
[33] Bao, J.; He, Y.-H.; Hirst, E.; Hofscheier, J.; Kasprzyk, A.; Majumder, S., Polytopes and machine learning
[34] Chen, H.-Y.; He, Y.-H.; Lal, S.; Majumder, S., Machine learning Lie structures & applications to physics, Phys. Lett. B, 817, Article 136297 pp. (2021) · Zbl 07408522
[35] Berman, D. S.; He, Y.-H.; Hirst, E., Machine learning Calabi-Yau hypersurfaces, Phys. Rev. D, 105, 6, Article 066002 pp. (2022)
[36] Berglund, P.; Campbell, B.; Jejjala, V., Machine learning kreuzer-skarke Calabi-Yau threefolds
[37] Bromley, J.; Bentz, J. W.; Bottou, L.; Guyon, I.; LeCun, Y.; Moore, C.; Säckinger, E.; Shah, R., Signature verification using a siamese time delay neural network, Int. J. Pattern Recognit. Artif. Intell., 7 (1993)
[38] He, Y.-H.; Lal, S.; Zaz, M. Z., The world in a grain of sand: condensing the string vacuum degeneracy
[39] Bergman, O.; Rodríguez-Gómez, D., The Cat’s Cradle: deforming the higher rank E_1 and \(\widetilde{E}_1\) theories, J. High Energy Phys., 02, Article 122 pp. (2021)
[40] Cabrera, S.; Hanany, A.; Yagi, F., Tropical geometry and five dimensional Higgs branches at infinite coupling, J. High Energy Phys., 01, Article 068 pp. (2019) · Zbl 1409.81094
[41] van Beest, M.; Bourget, A.; Eckhard, J.; Schafer-Nameki, S., (Symplectic) leaves and (5d Higgs) branches in the poly(go)nesian tropical rain forest, J. High Energy Phys., 11, Article 124 pp. (2020) · Zbl 1461.81132
[42] DeWolfe, O.; Hanany, A.; Iqbal, A.; Katz, E., Five-branes, seven-branes and five-dimensional E(n) field theories, J. High Energy Phys., 03, Article 006 pp. (1999) · Zbl 0965.81091
[43] Iqbal, A., Selfintersection number of BPS junctions in backgrounds of three-branes and seven-branes, J. High Energy Phys., 10, Article 032 pp. (1999) · Zbl 0957.81034
[44] Saxena, V., Rank-two 5d SCFTs from M-theory at isolated toric singularities: a systematic study, J. High Energy Phys., 04, Article 198 pp. (2020) · Zbl 1436.81121
[45] Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X., TensorFlow: large-scale machine learning on heterogeneous systems (2015), Software available from
[46] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E., Scikit-learn: machine learning in python, J. Mach. Learn. Res., 12, 2825-2830 (2011) · Zbl 1280.68189
[47] Ekeany, Siamese-network-with-triplet-loss (2019)
[48] van der Maaten, L.; Hinton, G. E., Visualizing high-dimensional data using t-sne, J. Mach. Learn. Res., 9, 2579-2605 (2008) · Zbl 1225.68219
[49] Tralie, C.; Saul, N.; Bar-On, R., Ripser.py: a lean persistent homology library for python, J. Open Sour. Softw., 3, 29, 925 (Sep 2018)
[50] Cirafici, M., Persistent homology and string vacua, J. High Energy Phys., 03, Article 045 pp. (2016) · Zbl 1388.81505
[51] Cole, A.; Shiu, G., Topological data analysis for the string landscape, J. High Energy Phys., 03, Article 054 pp. (2019) · Zbl 1414.83083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.