×

Fibers add flavor. I: Classification of 5d SCFTs, flavor symmetries and BPS states. (English) Zbl 1429.81066

Summary: We propose a graph-based approach to 5d superconformal field theories (SCFTs) based on their realization as M-theory compactifications on singular elliptic Calabi-Yau threefolds. Field-theoretically, these 5d SCFTs descend from 6d \(\mathcal{N} = (1, 0)\) SCFTs by circle compactification and mass deformations. We derive a description of these theories in terms of graphs, so-called Combined Fiber Diagrams, which encode salient features of the partially resolved Calabi-Yau geometry, and provides a combinatorial way of characterizing all 5d SCFTs that descend from a given 6d theory. Remarkably, these graphs manifestly capture strongly coupled data of the 5d SCFTs, such as the superconformal flavor symmetry, BPS states, and mass deformations. The capabilities of this approach are demonstrated by deriving all rank one and rank two 5d SCFTs. The full potential, however, becomes apparent when applied to theories with higher rank. Starting with the higher rank conformal matter theories in 6d, we are led to the discovery of previously unknown flavor symmetry enhancements and new 5d SCFTs.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
83E30 String and superstring theories in gravitational theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)

References:

[1] E. Witten, Some comments on string dynamics, in the proceedings of Future perspectives in string theory (Strings’95), March 13-18, Los Angeles, U.S.A. (1995), hep-th/9507121 [INSPIRE].
[2] J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP05 (2014) 028 [Erratum ibid.06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
[3] L. Bhardwaj, Classification of 6d \(\mathcal{N} \) = (1, 0) gauge theories, JHEP11 (2015) 002 [arXiv:1502.06594] [INSPIRE]. · Zbl 1388.81285
[4] J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys.63 (2015) 468 [arXiv:1502.05405] [INSPIRE]. · Zbl 1338.81326
[5] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys.B 497 (1997) 56 [hep-th/9702198] [INSPIRE]. · Zbl 0934.81061
[6] P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On geometric classification of 5d SCFTs, JHEP04 (2018) 103 [arXiv:1801.04036] [INSPIRE]. · Zbl 1390.81603
[7] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \(\mathcal{N} = 2\) SCFTs. Part I. Physical constraints on relevant deformations, JHEP02 (2018) 001 [arXiv:1505.04814] [INSPIRE]. · Zbl 1387.81301
[8] F. Apruzzi et al., 5d superconformal field theories and graphs, arXiv:1906.11820 [INSPIRE]. · Zbl 1434.81093
[9] D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys.B 483 (1997) 229 [hep-th/9609070] [INSPIRE]. · Zbl 0925.81228
[10] D. Xie and S.-T. Yau, Three dimensional canonical singularity and five dimensional \(\mathcal{N} = 1\) SCFT, JHEP06 (2017) 134 [arXiv:1704.00799] [INSPIRE]. · Zbl 1380.81416
[11] M. Del Zotto, J.J. Heckman and D.R. Morrison, 6D SCFTs and phases of 5D theories, JHEP09 (2017) 147 [arXiv:1703.02981] [INSPIRE]. · Zbl 1382.81176
[12] P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards classification of 5d SCFTs: single gauge node, arXiv:1705.05836 [INSPIRE].
[13] F. Apruzzi, L. Lin and C. Mayrhofer, Phases of 5d SCFTs from M-/F-theory on non-flat fibrations, JHEP05 (2019) 187 [arXiv:1811.12400] [INSPIRE]. · Zbl 1416.81177
[14] C. Closset, M. Del Zotto and V. Saxena, Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective, SciPost Phys.6 (2019) 052 [arXiv:1812.10451] [INSPIRE].
[15] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys.B 504 (1997) 239 [hep-th/9704170] [INSPIRE]. · Zbl 0979.81591
[16] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP01 (1998) 002 [hep-th/9710116] [INSPIRE].
[17] O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP03 (1999) 006 [hep-th/9902179] [INSPIRE]. · Zbl 0965.81091
[18] O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP12 (2015) 163 [arXiv:1507.03860] [INSPIRE]. · Zbl 1388.81772
[19] G. Zafrir, Brane webs, 5d gauge theories and 6d \(\mathcal{N} \) = (1, 0) SCFT’s, JHEP12 (2015) 157 [arXiv:1509.02016] [INSPIRE]. · Zbl 1388.81370
[20] G. Zafrir, Brane webs and O5-planes, JHEP03 (2016) 109 [arXiv:1512.08114] [INSPIRE]. · Zbl 1388.83626
[21] K. Ohmori and H. Shimizu, S^1/T^2compactifications of 6d \(\mathcal{N} \) = (1, 0) theories and brane webs, JHEP03 (2016) 024 [arXiv:1509.03195] [INSPIRE]. · Zbl 1388.81592
[22] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Discrete theta angle from an O5-plane, JHEP11 (2017) 041 [arXiv:1707.07181] [INSPIRE]. · Zbl 1383.81165
[23] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 5-brane webs for 5d \(\mathcal{N} = 1\) G_2gauge theories, JHEP03 (2018) 125 [arXiv:1801.03916] [INSPIRE]. · Zbl 1388.81543
[24] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Dualities and 5-brane webs for 5d rank 2 SCFTs, JHEP12 (2018) 016 [arXiv:1806.10569] [INSPIRE]. · Zbl 1405.81101
[25] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett.B 388 (1996) 753 [hep-th/9608111] [INSPIRE].
[26] A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett.B 460 (1999) 307 [hep-th/9905148] [INSPIRE]. · Zbl 0987.81590
[27] O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS_6duals, JHEP07 (2012) 171 [arXiv:1206.3503] [INSPIRE]. · Zbl 1397.83127
[28] H. Hayashi, C. Lawrie, D.R. Morrison and S. Schäfer-Nameki, Box graphs and singular fibers, JHEP05 (2014) 048 [arXiv:1402.2653] [INSPIRE]. · Zbl 1333.81369
[29] J. Tian and Y.-N. Wang, E-string spectrum and typical F-theory geometry, arXiv:1811.02837 [INSPIRE].
[30] F. Apruzzi et al., Fibers add flavor. Part III. Higher rank,
[31] F. Apruzzi et al., Fibers add flavor. Part II. 5d SCFTs, gauge theories and dualities, arXiv:1909.09128 [INSPIRE]. · Zbl 1435.81177
[32] H.-C. Kim, S.-S. Kim and K. Lee, 5-dim superconformal index with enhanced en global symmetry, JHEP10 (2012) 142 [arXiv:1206.6781] [INSPIRE]. · Zbl 1397.81382
[33] O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-brane webs, symmetry enhancement and duality in 5d supersymmetric gauge theory, JHEP03 (2014) 112 [arXiv:1311.4199] [INSPIRE].
[34] G. Zafrir, Duality and enhancement of symmetry in 5d gauge theories, JHEP12 (2014) 116 [arXiv:1408.4040] [INSPIRE].
[35] V. Mitev, E. Pomoni, M. Taki and F. Yagi, Fiber-base duality and global symmetry enhancement, JHEP04 (2015) 052 [arXiv:1411.2450] [INSPIRE]. · Zbl 1388.81867
[36] C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP07 (2015) 063 [arXiv:1406.6793] [INSPIRE]. · Zbl 1388.81331
[37] D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d \(\mathcal{N} = 1\) theories, JHEP01 (2017) 019 [arXiv:1506.03871] [INSPIRE]. · Zbl 1373.81351
[38] Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, PTEP2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].
[39] K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories, JHEP07 (2015) 167 [arXiv:1505.04743] [INSPIRE]. · Zbl 1388.81160
[40] G. Zafrir, Instanton operators and symmetry enhancement in 5d supersymmetric USp, SO and exceptional gauge theories, JHEP07 (2015) 087 [arXiv:1503.08136] [INSPIRE]. · Zbl 1388.81900
[41] O. Bergman and D. Rodriguez-Gomez, A note on instanton operators, instanton particles and supersymmetry, JHEP05 (2016) 068 [arXiv:1601.00752] [INSPIRE]. · Zbl 1388.81115
[42] H. Hayashi et al., A new 5d description of 6d D-type minimal conformal matter, JHEP08 (2015) 097 [arXiv:1505.04439] [INSPIRE]. · Zbl 1388.81326
[43] G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch at infinite coupling, JHEP07 (2018) 061 [arXiv:1712.06604] [INSPIRE]. · Zbl 1395.81265
[44] S. Cabrera, A. Hanany and F. Yagi, Tropical geometry and five dimensional Higgs branches at infinite coupling, JHEP01 (2019) 068 [arXiv:1810.01379] [INSPIRE]. · Zbl 1409.81094
[45] M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d conformal matter, JHEP02 (2015) 054 [arXiv:1407.6359] [INSPIRE].
[46] C. Lawrie and S. Schäfer-Nameki, The Tate form on steroids: resolution and higher codimension fibers, JHEP04 (2013) 061 [arXiv:1212.2949] [INSPIRE]. · Zbl 1342.81302
[47] P. Candelas et al., Codimension three bundle singularities in F-theory, JHEP06 (2002) 014 [hep-th/0009228] [INSPIRE].
[48] V. Braun, Toric elliptic fibrations and F-theory compactifications, JHEP01 (2013) 016 [arXiv:1110.4883] [INSPIRE]. · Zbl 1342.81405
[49] V. Braun, T.W. Grimm and J. Keitel, Geometric engineering in toric F-theory and GUTs with U(1) gauge factors, JHEP12 (2013) 069 [arXiv:1306.0577] [INSPIRE].
[50] M. Cvetič, A. Grassi, D. Klevers and H. Piragua, Chiral four-dimensional f-theory compactifications with SU(5) and multiple U(1)-factors, JHEP04 (2014) 010 [arXiv:1306.3987] [INSPIRE].
[51] F. Baume, E. Palti and S. Schwieger, On E_8and F-theory GUTs, JHEP06 (2015) 039 [arXiv:1502.03878] [INSPIRE]. · Zbl 1388.81279
[52] L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Tools for CICYs in F-theory, JHEP11 (2016) 004 [arXiv:1608.07554] [INSPIRE]. · Zbl 1390.81404
[53] W. Buchmüller, M. Dierigl, P.-K. Oehlmann and F. Ruehle, The toric SO(10) F-theory landscape, JHEP12 (2017) 035 [arXiv:1709.06609] [INSPIRE]. · Zbl 1383.83159
[54] L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Fibrations in CICY threefolds, JHEP10 (2017) 077 [arXiv:1708.07907] [INSPIRE]. · Zbl 1383.83147
[55] Y.-C. Huang and W. Taylor, Comparing elliptic and toric hypersurface Calabi-Yau threefolds at large Hodge numbers, JHEP02 (2019) 087 [arXiv:1805.05907] [INSPIRE]. · Zbl 1411.83124
[56] M. Dierigl, P.-K. Oehlmann and F. Ruehle, Global tensor-matter transitions in F-theory, Fortsch. Phys.66 (2018) 1800037 [arXiv:1804.07386] [INSPIRE]. · Zbl 1535.83139
[57] I. Achmed-Zade, I. García-Etxebarria and C. Mayrhofer, A note on non-flat points in the SU(5) × U(1)_PQF-theory model, JHEP05 (2019) 013 [arXiv:1806.05612] [INSPIRE]. · Zbl 1416.81126
[58] R. Miranda, Smooth models for elliptic threefolds, in The birational geometry of degenerations, R. Friedman ed., Progress in Mathematics volume 29, Birkhäuser, Boston U.S.A. (1983). · Zbl 0583.14014
[59] M. Esole, M.J. Kang and S.-T. Yau, Mordell-Weil torsion, anomalies and phase transitions, arXiv:1712.02337 [INSPIRE].
[60] M. Esole, R. Jagadeesan and M.J. Kang, 48 Crepant paths to SU(2) × SU(3), arXiv:1905.05174 [INSPIRE].
[61] M. Esole and M.J. Kang, Flopping and slicing: SO(4) and Spin(4)-models, arXiv:1802.04802 [INSPIRE]. · Zbl 1480.81090
[62] M. Esole and M.J. Kang, The geometry of the SU(2) × G_2-model, JHEP02 (2019) 091 [arXiv:1805.03214] [INSPIRE]. · Zbl 1411.83132
[63] M. Bertolini, P.R. Merkx and D.R. Morrison, On the global symmetries of 6D superconformal field theories, JHEP07 (2016) 005 [arXiv:1510.08056] [INSPIRE]. · Zbl 1388.81774
[64] P.R. Merkx, Classifying global symmetries of 6D SCFTs, JHEP03 (2018) 163 [arXiv:1711.05155] [INSPIRE]. · Zbl 1388.81864
[65] A.P. Braun and S. Schäfer-Nameki, Box graphs and resolutions I, Nucl. Phys.B 905 (2016) 447 [arXiv:1407.3520] [INSPIRE]. · Zbl 1332.81127
[66] A.P. Braun and S. Schäfer-Nameki, Box graphs and resolutions II: from Coulomb phases to fiber faces, Nucl. Phys.B 905 (2016) 480 [arXiv:1511.01801] [INSPIRE]. · Zbl 1332.81128
[67] C. Lawrie, S. Schäfer-Nameki and J.-M. Wong, F-theory and all things rational: surveying U(1) symmetries with rational sections, JHEP09 (2015) 144 [arXiv:1504.05593] [INSPIRE]. · Zbl 1388.81856
[68] O.J. Ganor, D.R. Morrison and N. Seiberg, Branes, Calabi-Yau spaces and toroidal compactification of the N = 1 six-dimensional E_8theory, Nucl. Phys.B 487 (1997) 93 [hep-th/9610251] [INSPIRE]. · Zbl 0925.14015
[69] A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau threefolds, Phys. Lett.B 357 (1995) 76 [hep-th/9506144] [INSPIRE].
[70] S. Ferrara, R.R. Khuri and R. Minasian, M theory on a Calabi-Yau manifold, Phys. Lett.B 375 (1996) 81 [hep-th/9602102] [INSPIRE]. · Zbl 0997.81558
[71] E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys.B 471 (1996) 195 [hep-th/9603150] [INSPIRE]. · Zbl 1003.81537
[72] S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys.B 474 (1996) 323 [hep-th/9604097] [INSPIRE]. · Zbl 0925.81173
[73] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: rank one, JHEP07 (2019) 178 [arXiv:1809.01650] [INSPIRE]. · Zbl 1418.81086
[74] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: arbitrary rank, arXiv:1811.10616 [INSPIRE]. · Zbl 1418.81086
[75] C. Vafa, Evidence for F-theory, Nucl. Phys.B 469 (1996) 403 [hep-th/9602022] [INSPIRE]. · Zbl 1003.81531
[76] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys.B 473 (1996) 74 [hep-th/9602114] [INSPIRE]. · Zbl 0925.14005
[77] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys.B 476 (1996) 437 [hep-th/9603161] [INSPIRE]. · Zbl 0925.14005
[78] S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys.B 497 (1997) 146 [hep-th/9606086] [INSPIRE]. · Zbl 0935.81056
[79] M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys.B 481 (1996) 215 [hep-th/9605200] [INSPIRE]. · Zbl 0925.14010
[80] S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tate’s algorithm and F-theory, JHEP08 (2011) 094 [arXiv:1106.3854] [INSPIRE]. · Zbl 1298.81307
[81] D.S. Park, Anomaly equations and intersection theory, JHEP01 (2012) 093 [arXiv:1111.2351] [INSPIRE]. · Zbl 1306.81268
[82] M. Esole and S.-T. Yau, Small resolutions of SU(5)-models in F-theory, Adv. Theor. Math. Phys.17 (2013) 1195 [arXiv:1107.0733] [INSPIRE]. · Zbl 1447.81171
[83] J. Marsano and S. Schäfer-Nameki, Yukawas, G-flux and spectral covers from resolved Calabi-Yau’s, JHEP11 (2011) 098 [arXiv:1108.1794] [INSPIRE]. · Zbl 1306.81258
[84] S. Krause, C. Mayrhofer and T. Weigand, G_4flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys.B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE]. · Zbl 1246.81271
[85] M. Esole, P. Jefferson and M.J. Kang, Euler characteristics of crepant resolutions of Weierstrass models, Commun. Math. Phys.371 (2019) 99 [arXiv:1703.00905] [INSPIRE]. · Zbl 1440.14176
[86] N. Mekareeya, K. Ohmori, Y. Tachikawa and G. Zafrir, E_8instantons on type-A ALE spaces and supersymmetric field theories, JHEP09 (2017) 144 [arXiv:1707.04370] [INSPIRE]. · Zbl 1382.81207
[87] Y. Tachikawa, On S-duality of 5d super Yang-Mills on S^1 , JHEP11 (2011) 123 [arXiv:1110.0531] [INSPIRE]. · Zbl 1306.81132
[88] L. Bhardwaj, D.R. Morrison, Y. Tachikawa and A. Tomasiello, The frozen phase of F-theory, JHEP08 (2018) 138 [arXiv:1805.09070] [INSPIRE]. · Zbl 1396.81147
[89] F. Apruzzi et al., Supplementary material: CFD-trees, https://people.maths.ox.ac.uk/schafernamek/CFD/.
[90] R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127 [INSPIRE]. · Zbl 0922.32015
[91] S. Kachru and M. Zimet, A comment on 4d and 5d BPS states, arXiv:1808.01529 [INSPIRE]. · Zbl 1434.81126
[92] M. Taki, Seiberg duality, 5D SCFTs and Nekrasov partition functions, arXiv:1401.7200 [INSPIRE].
[93] N. Yamatsu, Finite-dimensional Lie algebras and their representations for unified model building, arXiv:1511.08771 [INSPIRE]. · Zbl 07406614
[94] M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M- and [p, q]-strings, JHEP11 (2013) 112 [arXiv:1308.0619] [INSPIRE]. · Zbl 1342.81436
[95] S. Cecotti, D. Gaiotto and C. Vafa, tt^∗geometry in 3 and 4 dimensions, JHEP05 (2014) 055 [arXiv:1312.1008] [INSPIRE]. · Zbl 1333.81163
[96] S. Banerjee, P. Longhi and M. Romo, Exploring 5d BPS spectra with exponential networks, Annales Henri Poincaré20 (2019) 4055 [arXiv:1811.02875] [INSPIRE]. · Zbl 1426.81049
[97] U. Derenthal, Geometry of universal torsors, Ph.D. thesis, Universit¨at G¨ottingen, G¨ottingen, Germany (2006). · Zbl 1111.14033
[98] U. Derenthal, Singular del pezzo surfaces whose universal torsors are hypersurfaces, Proc. London Math. Soc.108 (2014) 638. · Zbl 1292.14027
[99] W. Taylor and Y.-N. Wang, Non-toric bases for elliptic Calabi-Yau threefolds and 6D F-theory vacua, Adv. Theor. Math. Phys.21 (2017) 1063 [arXiv:1504.07689] [INSPIRE]. · Zbl 1386.14150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.