×

Tropical geometry and five dimensional Higgs branches at infinite coupling. (English) Zbl 1409.81094

Summary: Superconformal five dimensional theories have a rich structure of phases and brane webs play a crucial role in studying their properties. This paper is devoted to the study of a three parameter family of SQCD theories, given by the number of colors \(N_c\) for an SU(\(N_c\)) gauge theory, number of fundamental flavors \(N_f\), and the Chern Simons level \(k\). The study of their infinite coupling Higgs branch is a long standing problem and reveals a rich pattern of moduli spaces, depending on the 3 values in a critical way. For a generic choice of the parameters we find a surprising number of 3 different components, with intersections that are closures of height 2 nilpotent orbits of the flavor symmetry. This is in contrast to previous studies where except for one case (\(N_c =2\), \(N_f =2\)), the parameters were restricted to the cases of Higgs branches that have only one component. The new feature is achieved thanks to a concept in tropical geometry which is called stable intersection and allows for a computation of the Higgs branch to almost all the cases which were previously unknown for this three parameter family apart form certain small number of exceptional theories with low rank gauge group. A crucial feature in the construction of the Higgs branch is the notion of dressed monopole operators.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
58J28 Eta-invariants, Chern-Simons invariants

References:

[1] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys.B 504 (1997) 239 [hep-th/9704170] [INSPIRE]. · Zbl 0979.81591
[2] O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, JHEP01 (1998) 002 [hep-th/9710116] [INSPIRE].
[3] S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Instanton Operators and the Higgs Branch at Infinite Coupling, JHEP04 (2017) 042 [arXiv:1505.06302] [INSPIRE]. · Zbl 1378.81137 · doi:10.1007/JHEP04(2017)042
[4] G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch at infinite coupling, JHEP07 (2018) 061 [arXiv:1712.06604] [INSPIRE]. · Zbl 1395.81265 · doi:10.1007/JHEP07(2018)061
[5] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys.B 492 (1997) 152 [hep-th/9611230] [INSPIRE]. · Zbl 0996.58509
[6] O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional Enfield theories, JHEP03 (1999) 006 [hep-th/9902179] [INSPIRE]. · Zbl 0965.81091 · doi:10.1088/1126-6708/1999/03/006
[7] F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP09 (2009) 052 [arXiv:0906.0359] [INSPIRE].
[8] H. Nakajima, Instantons on ale spaces, quiver varieties, and kac-moody algebras, Duke Math. J.76 (1994) 365. · Zbl 0826.17026
[9] A. Beauville, Symplectic singularities, Invent. Math.139 (2000) 541. · Zbl 0958.14001
[10] S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of \[3dN=4 \mathcal{N}=4\] gauge theories, JHEP01 (2014) 005 [arXiv:1309.2657] [INSPIRE]. · Zbl 1333.81395
[11] H. Nakajima, Towards a mathematical definition of Coulomb branches of \[3-dimensionalN=4 \mathcal{N}=4\] gauge theories, I, Adv. Theor. Math. Phys.20 (2016) 595 [arXiv:1503.03676] [INSPIRE]. · Zbl 1433.81121
[12] A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of \[3-dimensionalN=4 \mathcal{N}=4\] gauge theories, II, arXiv:1601.03586 [INSPIRE]. · Zbl 1479.81043
[13] H. Nakajima, Introduction to a provisional mathematical definition of Coulomb branches of \[3-dimensionalN=4 \mathcal{N}=4\] gauge theories, arXiv:1706.05154 [INSPIRE]. · Zbl 1433.81121
[14] C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, arXiv:1612.00809 [INSPIRE]. · Zbl 1390.81500
[15] K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett.B 387 (1996) 513 [hep-th/9607207] [INSPIRE]. · Zbl 0991.81588
[16] O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP04 (2015) 141 [arXiv:1410.2806] [INSPIRE]. · Zbl 1388.81706 · doi:10.1007/JHEP04(2015)141
[17] P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single Gauge Node, arXiv:1705.05836 [INSPIRE].
[18] P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, JHEP04 (2018) 103 [arXiv:1801.04036] [INSPIRE]. · Zbl 1390.81603 · doi:10.1007/JHEP04(2018)103
[19] H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Dualities and 5-brane webs for 5d rank 2 SCFTs, JHEP12 (2018) 016 [arXiv:1806.10569] [INSPIRE]. · Zbl 1405.81101 · doi:10.1007/JHEP12(2018)016
[20] O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement and Duality in 5d Supersymmetric Gauge Theory, JHEP03 (2014) 112 [arXiv:1311.4199] [INSPIRE]. · doi:10.1007/JHEP03(2014)112
[21] H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP08 (2015) 097 [arXiv:1505.04439] [INSPIRE]. · Zbl 1388.81326 · doi:10.1007/JHEP08(2015)097
[22] K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories, JHEP07 (2015) 167 [arXiv:1505.04743] [INSPIRE]. · Zbl 1388.81160 · doi:10.1007/JHEP07(2015)167
[23] D. Gaiotto and H.-C. Kim, Duality walls and defects in \[5dN=1 \mathcal{N}=1\] theories, JHEP01 (2017) 019 [arXiv:1506.03871] [INSPIRE]. · Zbl 1373.81351
[24] G. Ferlito and A. Hanany, A tale of two cones: the Higgs Branch of Sp (n) theories with 2n flavours, arXiv:1609.06724 [INSPIRE].
[25] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and strin dynamics, Phys. Lett.B 388 (1996) 753 [hep-th/9608111] [INSPIRE].
[26] D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys.B 483 (1997) 229 [hep-th/9609070] [INSPIRE]. · Zbl 0925.81228
[27] K. Altmann, The versal Deformation of an isolated toric Gorenstein Singularity, alg-geom/9403004. · Zbl 0894.14025
[28] K. Altmann, Infinitesimal Deformations and Obstructions for Toric Singularities, alg-geom/9405008. · Zbl 0922.14035
[29] S. Franco, A. Hanany, F. Saad and A.M. Uranga, Fractional branes and dynamical supersymmetry breaking, JHEP01 (2006) 011 [hep-th/0505040] [INSPIRE]. · doi:10.1088/1126-6708/2006/01/011
[30] P. Boalch, Simply-laced isomonodromy systems, Publications mathématiques de l’IH ÉS116 (2012)1 [arXiv:1107.0874]. · Zbl 1270.34204
[31] D. Xie, General Argyres-Douglas Theory, JHEP01 (2013) 100 [arXiv:1204.2270] [INSPIRE]. · Zbl 1342.81621 · doi:10.1007/JHEP01(2013)100
[32] M. Del Zotto and A. Hanany, Complete Graphs, Hilbert Series and the Higgs branch of the \[4dN=2 \mathcal{N}=2 \] (An, Am) SCFTs, Nucl. Phys.B 894 (2015) 439 [arXiv:1403.6523] [INSPIRE]. · Zbl 1328.81191
[33] E. Brugallé and K. Shaw, A bit of tropical geometry, arXiv:1311.2360. · Zbl 1320.14075
[34] D. Collingwood and W. McGovern, Nilpotent Orbits In Semisimple Lie Algebra: An Introduction, Mathematics series, Taylor & Francis, (1993). · Zbl 0972.17008
[35] H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv.57 (1982) 539. · Zbl 0511.14023 · doi:10.1007/BF02565876
[36] A. Hanany and N. Mekareeya, The small E8instanton and the Kraft Procesi transition, JHEP07 (2018) 098 [arXiv:1801.01129] [INSPIRE].
[37] S. Cabrera and A. Hanany, Quiver Subtractions, JHEP09 (2018) 008 [arXiv:1803.11205] [INSPIRE]. · Zbl 1398.81236
[38] M. Taki, Seiberg Duality, 5d SCFTs and Nekrasov Partition Functions, arXiv:1401.7200 [INSPIRE].
[39] O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP10 (1999) 036 [hep-th/9908075] [INSPIRE]. · Zbl 0957.81024 · doi:10.1088/1126-6708/1999/10/036
[40] O. Bergman and A. Fayyazuddin, String junction transitions in the moduli space of N = 2 SYM, Nucl. Phys.B 535 (1998) 139 [hep-th/9806011] [INSPIRE]. · Zbl 1079.81568
[41] L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-Lagrangian Theories from Brane Junctions, JHEP01 (2014) 175 [arXiv:1310.3841] [INSPIRE]. · Zbl 1333.83014 · doi:10.1007/JHEP01(2014)175
[42] O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP12 (2015) 163 [arXiv:1507.03860] [INSPIRE]. · Zbl 1388.81772
[43] S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb Branch and The Moduli Space of Instantons, JHEP12 (2014) 103 [arXiv:1408.6835] [INSPIRE]. · doi:10.1007/JHEP12(2014)103
[44] A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP01 (2013) 070 [arXiv:1205.4741] [INSPIRE]. · Zbl 1342.81494 · doi:10.1007/JHEP01(2013)070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.