×

Machine learning Calabi-Yau metrics. (English) Zbl 1537.53003

Summary: We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson’s algorithm for calculating balanced metrics on Kähler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, we demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson’s algorithm alone, with our new machine-learning algorithm decreasing the time required by between one and two orders of magnitude.
© 2020 Wiley-VCH GmbH

MSC:

53-08 Computational methods for problems pertaining to differential geometry
53D18 Generalized geometries (à la Hitchin)
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
32Q25 Calabi-Yau theory (complex-analytic aspects)
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
68T05 Learning and adaptive systems in artificial intelligence
68T07 Artificial neural networks and deep learning

References:

[1] P.Candelas, G. T.Horowitz, A.Strominger, E.Witten, Nucl. Phys.1985, B258, 46.
[2] V.Braun, Y.‐H.He, B. A.Ovrut, T.Pantev, Phys. Lett.2005, B618, 252, arXiv:hep‐th/0501070 [hep‐th]. · Zbl 1247.81349
[3] V.Bouchard, R.Donagi, Phys. Lett.2006, B633, 783, arXiv:hep‐th/0512149 [hep‐th]. · Zbl 1247.81348
[4] V.Braun, Y.‐H.He, B. A.Ovrut, T.Pantev, JHEP2006, 05, 043, arXiv:hep‐th/0512177 [hep‐th].
[5] V.Braun, Y.‐H.He, B. A.Ovrut, T.Pantev, JHEP2005, 06, 039, arXiv:hep‐th/0502155 [hep‐th].
[6] L. B.Anderson, J.Gray, Y.‐H.He, A.Lukas, JHEP2010, 02, 054, arXiv:0911.1569 [hep‐th].
[7] L. B.Anderson, J.Gray, A.Lukas, E.Palti, Phys. Rev.2011, D84, 106005, arXiv:1106.4804 [hep‐th].
[8] L. B.Anderson, J.Gray, A.Lukas, E.Palti, JHEP2012, 06, 113, arXiv:1202.1757 [hep‐th].
[9] L. B.Anderson, A.Constantin, J.Gray, A.Lukas, E.Palti, JHEP2014, 01, 047, arXiv:1307.4787 [hep‐th].
[10] B. A.Ovrut, A.Purves, S.Spinner, JHEP2015, 06, 182, arXiv:1503.01473 [hep‐ph].
[11] A. E.Faraggi, D. V.Nanopoulos, K.‐j.Yuan, Nucl. Phys.1990, B335, 347.
[12] G. B.Cleaver, A. E.Faraggi, D. V.Nanopoulos, Phys. Lett.1999, B455, 135, arXiv:hep‐ph/9811427 [hep‐ph]. · Zbl 1016.81506
[13] A.Constantin, Y.‐H.He, A.Lukas, Phys. Lett.2019, B792, 258, arXiv:1810.00444 [hep‐th].
[14] M.Ambroso, B.Ovrut, JHEP2009, 10, 011, arXiv:0904.4509 [hep‐th].
[15] M.Ambroso, B. A.Ovrut, Int. J. Mod. Phys.2011, A26, 1569, arXiv:1005.5392 [hep‐th].
[16] B. A.Ovrut, A.Purves, S.Spinner, JHEP2012, 11, 026, arXiv:1203.1325 [hep‐th].
[17] B. A.Ovrut, A.Purves, S.Spinner, Mod. Phys. Lett.2015, A30, 1550085, arXiv:1412.6103 [hep‐ph].
[18] V.Braun, Y.‐H.He, B. A.Ovrut, JHEP2006, 04, 019, arXiv:hep‐th/0601204 [hep‐th].
[19] S.Donaldson, J. Differential Geom.2001, 59, 479. · Zbl 1052.32017
[20] S.Donaldson, “Some numerical results in complex differential geometry”, math/0512625. · Zbl 1178.32018
[21] M. R.Douglas, R. L.Karp, S.Lukic, R.Reinbacher, J. Math. Phys.2008, 49, 032302, arXiv:hep‐th/0612075 [hep‐th]. · Zbl 1153.81351
[22] M. R.Douglas, R. L.Karp, S.Lukic, R.Reinbacher, JHEP2007, 12, 083, arXiv:hep‐th/0606261 [hep‐th].
[23] M.Headrick, T.Wiseman, Class. Quant. Grav.2005, 22, 4931, arXiv:hep‐th/0506129 [hep‐th].
[24] M.Headrick, A.Nassar, Adv. Theor. Math. Phys.2013, 17, 867, arXiv:0908.2635 [hep‐th].
[25] V.Braun, T.Brelidze, M. R.Douglas, B. A.Ovrut, JHEP2008, 05, 080, arXiv:0712.3563 [hep‐th].
[26] V.Braun, T.Brelidze, M. R.Douglas, B. A.Ovrut, JHEP2008, 07, 120, arXiv:0805.3689 [hep‐th].
[27] L. B.Anderson, V.Braun, R. L.Karp, B. A.Ovrut, JHEP2010, 06, 107, arXiv:1004.4399 [hep‐th].
[28] L. B.Anderson, V.Braun, B. A.Ovrut, JHEP2012, 01, 014, arXiv:1103.3041 [hep‐th].
[29] Y.‐H.He, “Deep‐learning the landscape”, arXiv:1706.02714 [hep‐th].
[30] Y.‐H.He, Phys. Lett. B2017, 774, 564.
[31] D.Krefl, R.‐K.Seong, Phys. Rev.2017, D96, 066014, arXiv:1706.03346 [hep‐th].
[32] F.Ruehle, JHEP2017, 08, 038, arXiv:1706.07024 [hep‐th].
[33] J.Carifio, J.Halverson, D.Krioukov, B. D.Nelson, JHEP2017, 09, 157, arXiv:1707.00655 [hep‐th].
[34] J.Carifio, W. J.Cunningham, J.Halverson, D.Krioukov, C.Long, B. D.Nelson, Phys. Rev. Lett.2018, 121, 101602, arXiv:1711.06685 [hep‐th].
[35] J.Liu, JHEP2017, 12, 149, arXiv:1707.02800 [hep‐th].
[36] T.Cohen, M.Freytsis, B.Ostdiek, JHEP2018, 02, 034, arXiv:1706.09451 [hep‐ph].
[37] G. K.Demir, N.Sönmez, H.Dogan, “Deep‐learning in search of light charged Higgs”, arXiv:1803.01550 [hep‐ph].
[38] Y.‐N.Wang, Z.Zhang, JHEP2018, 08, 009, arXiv:1804.07296 [hep‐th].
[39] K.Hashimoto, S.Sugishita, A.Tanaka, A.Tomiya, Phys. Rev.2018, D98, 046019, arXiv:1802.08313 [hep‐th].
[40] K.Bull, Y.‐H.He, V.Jejjala, C.Mishra, Phys. Lett.2018, B785, 65, arXiv:1806.03121 [hep‐th].
[41] K.Bull, Y.‐H.He, V.Jejjala, C.Mishra, Phys. Lett.2019, B795, 700, arXiv:1903.03113 [hep‐th].
[42] A.Cole, G.Shiu, JHEP2019, 03, 054, arXiv:1812.06960 [hep‐th].
[43] A.Mütter, E.Parr, P. K. S.Vaudrevange, Nucl. Phys.2019, B940, 113, arXiv:1811.05993 [hep‐th].
[44] R.Jinno, “Machine learning for bounce calculation”, arXiv:1805.12153 [hep‐th].
[45] T.Rudelius, JCAP2019, 1902, 044, arXiv:1810.05159 [hep‐th].
[46] J.Halverson, F.Ruehle, Phys. Rev.2019, D99, 046015, arXiv:1809.08279 [hep‐th].
[47] W. J.Cunningham, High performance algorithms for quantum gravity and cosmology. PhD thesis, Northeastern U., 2018. arXiv:1805.04463 [gr‐qc].
[48] D.Klaewer, L.Schlechter, Phys. Lett.2019, B789, 438, arXiv:1809.02547 [hep‐th].
[49] M.Demirtas, C.Long, L.McAllister, M.Stillman, “The Kreuzer‐Skarke axiverse”, arXiv:1808.01282 [hep‐th].
[50] C. R.Brodie, A.Constantin, R.Deen, A.Lukas, “Machine learning line bundle cohomology”, arXiv:1906.08730 [hep‐th].
[51] I. M.Comsa, M.Firsching, T.Fischbacher, JHEP2019, 08, 057, arXiv:1906.00207 [hep‐th].
[52] Y.‐H.He, “The Calabi-Yau landscape: from geometry, to physics, to machine‐learning”, arXiv:1812.02893 [hep‐th]. · Zbl 1492.14001
[53] V.Jejjala, A.Kar, O.Parrikar, “Deep Learning the hyperbolic volume of a knot”, arXiv:1902.05547 [hep‐th]. · Zbl 1430.57001
[54] Y.‐H.He, M.Kim, “Learning algebraic structures: Preliminary investigations”, arXiv:1905.02263 [cs.LG].
[55] Y.‐H.He, S.‐J.Lee, “Distinguishing elliptic fibrations with AI”, arXiv:1904.08530 [hep‐th].
[56] S.‐T.Yau, Proceedings of the National Academy of Sciences1977, 74, 1798.
[57] X.Chen, J. Differential Geom.2000, 56, 189. · Zbl 1041.58003
[58] A.Strominger, E.Witten, Commun. Math. Phys.1985, 101, 341.
[59] A.Strominger, Phys. Rev. Lett.1985, 55, 2547.
[60] M. R.Douglas, Nucl. Phys.2015, B898, 667, arXiv:1503.02899 [hep‐th].
[61] C.Doran, M.Headrick, C. P.Herzog, J.Kantor, T.Wiseman, Commun. Math. Phys.2008, 282, 357, arXiv:hep‐th/0703057 [HEP‐TH]. · Zbl 1159.32014
[62] J.Keller, S.Lukic, J. Geom. Phys.2015, 92, 252, arXiv:0907.1387 [math.DG].
[63] G.Tian, J. Differential Geom.1990, 32, 99. · Zbl 0706.53036
[64] L.Lin, T.Weigand, Fortsch. Phys.2015, 63, 55, arXiv:1406.6071 [hep‐th].
[65] M.Cvetic, D.Klevers, D. K. M.Peña, P.‐K.Oehlmann, J.Reuter, JHEP2015, 08, 087, arXiv:1503.02068 [hep‐th].
[66] D. K. MayorgaPena, R.Valandro, JHEP2018, 03, 107, arXiv:1708.09452 [hep‐th].
[67] M.Cvetič, L.Lin, M.Liu, P.‐K.Oehlmann, JHEP2018, 09, 089, arXiv:1807.01320 [hep‐th].
[68] M.Cvetič, J.Halverson, L.Lin, M.Liu, J.Tian, Phys. Rev. Lett.2019, 123, 101601, arXiv:1903.00009 [hep‐th].
[69] W.Taylor, A. P.Turner, “Generic construction of the Standard Model gauge group and matter representations in F‐theory”, arXiv:1906.11092 [hep‐th].
[70] M.Mohri, A.Rostamizadeh, A.Talwalkar, Foundations of machine learning, MIT press, 2018. · Zbl 1407.68007
[71] S.Hartshorn, “Machine learning with random forests and decision trees: A visual guide for beginners”, Kindle Edition (2016).
[72] M.Larfors, R.Schneider, “Line bundle cohomologies on CICYs with Picard number two”, arXiv:1906.00392 [hep‐th].
[73] A.Constantin, A.Lukas, “Formulae for line bundle cohomology on Calabi-Yau threefolds”, arXiv:1808.09992 [hep‐th].
[74] R.Donagi, Y.‐H.He, B. A.Ovrut, R.Reinbacher, Phys. Lett.2004, B598, 279, arXiv:hep‐th/0403291 [hep‐th]. · Zbl 1247.14044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.