×

Sub-Hinze scale bubble production in turbulent bubble break-up. (English) Zbl 1494.76094

Summary: We study bubble break-up in homogeneous and isotropic turbulence by direct numerical simulations of the two-phase incompressible Navier-Stokes equations. We create the turbulence by forcing in physical space and introduce the bubble once a statistically stationary state is reached. We perform a large ensemble of simulations to investigate the effect of the Weber number (the ratio of turbulent and surface tension forces) on bubble break-up dynamics and statistics, including the child bubble size distribution, and discuss the numerical requirements to obtain results independent of grid size. We characterize the critical Weber number below which no break-up occurs and the associated Hinze scale \(d_h\). At Weber number close to stable conditions (initial bubble sizes \(d_0\approx d_h)\), we observe binary and tertiary break-ups, leading to bubbles mostly between \(0.5d_h\) and \(d_h\), a signature of a production process local in scale. For large Weber numbers \((d_0> 3d_h)\), we observe the creation of a wide range of bubble radii, with numerous child bubbles between \(0.1d_h\) and \(0.3d_h\), an order of magnitude smaller than the parent bubble. The separation of scales between the parent and child bubble is a signature of a production process non-local in scale. The formation mechanism of these sub-Hinze scale bubbles relates to rapid large deformation and successive break-ups: the first break-up in a sequence leaves highly deformed bubbles which will break again, without recovering a spherical shape and creating an array of much smaller bubbles. We discuss the application of this scenario to the production of sub-Hinze bubbles under breaking waves.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76F05 Isotropic turbulence; homogeneous turbulence
76F65 Direct numerical and large eddy simulation of turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
76D45 Capillarity (surface tension) for incompressible viscous fluids

Software:

Gerris
Full Text: DOI

References:

[1] Afshar-Mohajer, N., Li, C., Rule, A.M., Katz, J. & Koehler, K.2018A laboratory study of particulate and gaseous emissions from crude oil and crude oil-dispersant contaminated seawater due to breaking waves. Atmos. Environ.179, 177-186.
[2] Aiyer, A.K., Yang, D., Chamecki, M. & Meneveau, C.2019A population balance model for large eddy simulation of polydisperse droplet evolution. J. Fluid Mech.878, 700-739. · Zbl 1430.76293
[3] Andersson, R. & Andersson, B.2006On the breakup of fluid particles in turbulent flows. AIChE J.52 (6), 2020-2030.
[4] Ayati, A.A., Farias, P.S.C., Azevedo, L.F.A. & De Paula, I.B.2017Characterization of linear interfacial waves in a turbulent gas-liquid pipe flow. Phys. Fluids29 (6), 062106.
[5] Baba, E.1969A new component of viscous resistance of ships. J. Soc. Nav. Archit. Japan1969 (125), 23-34.
[6] Bagué, A., Fuster, D., Popinet, S., Scardovelli, R. & Zaleski, S.2010Instability growth rate of two-phase mixing layers from a linear eigenvalue problem and an initial-value problem. Phys. Fluids22 (9), 092104.
[7] Balachandar, S. & Eaton, J.K.2010Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech.42, 111-133. · Zbl 1345.76106
[8] Berny, A., Deike, L., Séon, T. & Popinet, S.2020Role of all jet drops in mass transfer from bursting bubbles. Phys. Rev. Fluids5 (3), 033605.
[9] Blenkinsopp, C.E. & Chaplin, J.R.2010Bubble size measurements in breaking waves using optical fiber phase detection probes. IEEE J. Ocean. Engng35 (2), 388-401.
[10] Cahn, J.W. & Hilliard, J.E.1959Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys.31 (3), 688-699.
[11] Canu, R., Puggelli, S., Essadki, M., Duret, B., Menard, T., Massot, M., Reveillon, J. & Demoulin, F.X.2018Where does the droplet size distribution come from?Intl J. Multiphase Flow107, 230-245.
[12] Chan, W.H.R., Johnson, P.L., Moin, P. & Urzay, J.2021The turbulent bubble break-up cascade. Part 2. Numerical simulations of breaking waves. J. Fluid Mech.912, A43. · Zbl 1461.76454
[13] Chan, W.H.R., Mirjalili, S., Jain, S.S., Urzay, J., Mani, A. & Moin, P.2019Birth of microbubbles in turbulent breaking waves. Phys. Rev. Fluids4 (10), 100508.
[14] Chen, S. & Doolen, G.D.1998Lattice boltzmann method for fluid flows. Annu. Rev. Fluid Mech.30 (1), 329-364. · Zbl 1398.76180
[15] Cowen, E.A. & Variano, E.A.2008A random-jet-stirred turbulence tank. J. Fluid Mech.604, 1-32. · Zbl 1151.76358
[16] Deane, G.B. & Stokes, M.D.2002Scale dependence of bubble creation mechanisms in breaking waves. Nature418, 839-844.
[17] Deike, L., Ghabache, E., Liger-Belair, G., Das, A.K., Zaleski, S., Popinet, S. & Seon, T.2018The dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids3 (1), 013603.
[18] Deike, L., Lenain, L. & Melville, W.K.2017Air entrainment by breaking waves. Geophys. Res. Lett.44, 3779-3787.
[19] Deike, L. & Melville, W.K.2018Gas transfer by breaking waves. Geophys. Res. Lett.45 (19), 10-482.
[20] Deike, L., Melville, W.K. & Popinet, S.2016Air entrainment and bubble statistics in breaking waves. J. Fluid Mech.801, 91-129. · Zbl 1462.76040
[21] Deike, L., Popinet, S. & Melville, W.K.2015Capillary effects on wave breaking. J. Fluid Mech.769, 541-569. · Zbl 1431.76031
[22] Desjardins, O., Moureau, V. & Pitsch, H.2008An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys.227 (18), 8395-8416. · Zbl 1256.76051
[23] Dodd, M.S. & Ferrante, A.2016On the interaction of Taylor length scale size droplets and isotropic turbulence. J. Fluid Mech.806, 356-412. · Zbl 1383.76486
[24] Duret, B., Luret, G., Reveillon, J., Ménard, T., Berlemont, A. & Demoulin, F.-X.2012Dns analysis of turbulent mixing in two-phase flows. Intl J. Multiphase Flow40, 93-105.
[25] Eggers, J. & Villermaux, E.2008Physics of liquid jets. Rep. Prog. Phys.71 (3), 036601.
[26] Elghobashi, S.2019Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech.51 (1), 217-244. · Zbl 1412.76046
[27] Essadki, M., De Chaisemartin, S., Laurent, F. & Massot, M.2018High order moment model for polydisperse evaporating sprays towards interfacial geometry description. SIAM J. Appl. Maths78 (4), 2003-2027. · Zbl 1391.76775
[28] Fuster, D. & Popinet, S.2018An all-mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys.374, 752-768. · Zbl 1416.76310
[29] Galinat, S., Masbernat, O., Guiraud, P., Dalmazzone, C. & Noı, C.2005Drop break-up in turbulent pipe flow downstream of a restriction. Chem. Engng Sci.60 (23), 6511-6528.
[30] Galinat, S., Risso, F., Masbernat, O. & Guiraud, P.2007Dynamics of drop breakup in inhomogeneous turbulence at various volume fractions. J. Fluid Mech.578, 85-94. · Zbl 1111.76311
[31] Garrett, C., Li, M. & Farmer, D.2000The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr.30 (9), 2163-2171.
[32] Gopalan, B. & Katz, J.2010Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets. Phys. Rev. Lett.104 (5), 054501.
[33] Han, L., Luo, H. & Liu, Y.2011A theoretical model for droplet breakup in turbulent dispersions. Chem. Engng Sci.66 (4), 766-776.
[34] Hinze, J.O.1955Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J.1 (3), 289-295.
[35] Van Hooft, J.A., Popinet, S., Van Heerwaarden, C.C., Van Der Linden, S.J.A., De Roode, S.R. & Van De Wiel, B.J.H.2018Towards adaptive grids for atmospheric boundary-layer simulations. Boundary-Layer Meteorol.167 (3), 421-443.
[36] Keeling, R.F.1993On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean. J. Mar. Res.51 (2), 237-271.
[37] Kolmogorov, A.1949On the breakage of drops in a turbulent flow. Dokl. Akad. Navk SSSR66, 825-828. · Zbl 0034.41601
[38] Kolmogorov, A.N.1941The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR30, 301. · JFM 67.0850.06
[39] Lai, C.-Y., Eggers, J. & Deike, L.2018Bubble bursting: universal cavity and jet profiles. Phys. Rev. Lett.121, 144501.
[40] Liang, J.H., Mcwilliams, J.C., Sullivan, P.P. & Baschek, B.2011Modeling bubbles and dissolved gases in the ocean. J. Geophys. Res.116, C03015.
[41] Liao, Y. & Lucas, D.2009A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Engng Sci.64 (15), 3389-3406.
[42] Loewen, M.R. & Melville, W.K.1994An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves. J. Acoust. Soc. Am.95 (3), 1329-1343.
[43] Loisy, A. & Naso, A.2017Interaction between a large buoyant bubble and turbulence. Phys. Rev. Fluids2, 014606.
[44] Lu, J. & Tryggvason, G.2008Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids20 (4), 040701. · Zbl 1182.76476
[45] Lu, J. & Tryggvason, G.2013Dynamics of nearly spherical bubbles in a turbulent channel upflow. J. Fluid Mech.732, 166. · Zbl 1294.76252
[46] Luo, H. & Svendsen, H.F.1996Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J.42 (5), 1225-1233.
[47] Magnaudet, J. & Eames, I.2000The motion of high-reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech.32 (1), 659-708. · Zbl 0989.76082
[48] Marcotte, F., Michon, G.-J., Séon, T. & Josserand, C.2019Ejecta, corolla, and splashes from drop impacts on viscous fluids. Phys. Rev. Lett.122 (1), 014501.
[49] Martinez-Bazan, C., Montanes, J.L. & Lasheras, J.C.1999aOn the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech.401, 157-182. · Zbl 0974.76087
[50] Martinez-Bazan, C., Montanes, J.L. & Lasheras, J.C.1999bOn the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size pdf of the resulting daughter bubbles. J. Fluid Mech.401, 183-207. · Zbl 0974.76087
[51] Martinez-Bazan, C., Rodriguez-Rodriguez, J., Deane, G.B., Montañes, J.L. & Lasheras, J.C.2010Considerations on bubble fragmentation models. J. Fluid Mech.661, 159-177. · Zbl 1205.76262
[52] Melville, W.K.1996The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech.28 (1), 279-321.
[53] Mostert, W. & Deike, L.2020Inertial energy dissipation in shallow-water breaking waves. J. Fluid Mech.890, A12. · Zbl 1460.76103
[54] Mostert, W., Popinet, S. & Deike, L.2021 High-resolution direct simulation of deep water breaking waves: transition to turbulence, bubbles and droplet production. arXiv:2103.05851.
[55] Mukherjee, S., Safdari, A., Shardt, O., Kenjereš, S. & Van Den Akker, H.E.A.2019Droplet-turbulence interactions and quasi-equilibrium dynamics in turbulent emulsions. J. Fluid Mech.878, 221-276. · Zbl 1430.76247
[56] Nambiar, D.K.R., Kumar, R., Das, T.R. & Gandhi, K.S.1992A new model for the breakage frequency of drops in turbulent stirred dispersions. Chem. Engng Sci.47 (12), 2989-3002.
[57] Naso, A. & Prosperetti, A.2010The interaction between a solid particle and a turbulent flow. New J. Phys.12 (3), 033040.
[58] Perrard, S., Rivière, A., Mostert, W. & Deike, L.2021Bubble deformation by a turbulent flow. J. Fluid Mech. (submitted) arXiv:2011.1054.
[59] Pope, S.B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[60] Popinet, S.2003Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries. J. Comput. Phys.190 (2), 572-600. · Zbl 1076.76002
[61] Popinet, S.2009An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys.228, 5838-5866. · Zbl 1280.76020
[62] Popinet, S.2015A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations. J. Comput. Phys.302, 336-358. · Zbl 1349.76377
[63] Popinet, S.2018Numerical models of surface tension. Annu. Rev. Fluid Mech.50, 49-75. · Zbl 1384.76016
[64] Qi, Y., Masuk, A.U.M. & Ni, R.2020Towards a model of bubble breakup in turbulence through experimental constraints. Intl J. Multiphase Flow132, 103397.
[65] Qian, D., Mclaughlin, J.B., Sankaranarayanan, K., Sundaresan, S. & Kontomaris, K.2006Simulation of bubble breakup dynamics in homogeneous turbulence. Chem. Engng Commun.193 (8), 1038-1063.
[66] Ravelet, F., Colin, C. & Risso, F.2011On the dynamics and breakup of a bubble rising in a turbulent flow. Phys. Fluids23 (10), 103301.
[67] Reichl, B.G. & Deike, L.2020Contribution of sea-state dependent bubbles to air-sea carbon dioxide fluxes. Geophys. Res. Lett.47, e2020GL087267.
[68] Revuelta, A., Rodríguez-Rodríguez, J. & Martínez-Bazán, C.2006Bubble break-up in a straining flow at finite Reynolds numbers. J. Fluid Mech.551, 175-184. · Zbl 1085.76018
[69] Risso, F.2000The mechanisms of deformation and breakup of drops and bubbles. Multiphase Sci. Technol.12 (1).
[70] Risso, F. & Fabre, J.1998Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech.372, 323-355. · Zbl 0941.76505
[71] Rojas, G. & Loewen, M.R.2007Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves. Exp. Fluids43 (6), 895-906.
[72] Rosales, C. & Meneveau, C.2005Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids17 (9), 095106. · Zbl 1187.76449
[73] Ruth, D.J., Mostert, W., Perrard, S. & Deike, L.2019Bubble pinch-off in turbulence. Proc. Natl Acad. Sci. USA116 (51), 25412-25417. · Zbl 1456.76131
[74] Scardovelli, R. & Zaleski, S.1999Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech.31 (1), 567-603.
[75] Scott, D.W.2015Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons. · Zbl 1311.62004
[76] Shakeri, M., Tavakolinejad, M. & Duncan, J.H.2009An experimental investigation of divergent bow waves simulated by a two-dimensional plus temporal wave marker technique. J. Fluid Mech.634, 217-243. · Zbl 1183.76045
[77] Shan, X. & Chen, H.1993Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E47 (3), 1815.
[78] Soligo, G., Roccon, A. & Soldati, A.2019Breakage, coalescence and size distribution of surfactant-laden droplets in turbulent flow. J. Fluid Mech.881, 244-282. · Zbl 1430.76250
[79] Spandan, V., Verzicco, R. & Lohse, D.2018Physical mechanisms governing drag reduction in turbulent Taylor-Couette flow with finite-size deformable bubbles. J. Fluid Mech.849, R3. · Zbl 1415.76663
[80] Thoraval, M.-J., Takehara, K., Etoh, T.G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S.T.2012von kármán vortex street within an impacting drop. Phys. Rev. Lett.108, 264506.
[81] Toutant, A., Labourasse, E., Lebaigue, O. & Simonin, O.2008Dns of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: a priori tests for les two-phase flow modelling. Comput. Fluids37 (7), 877-886. · Zbl 1143.76466
[82] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y.-J.2001A front-tracking method for the computations of multiphase flow. J. Comput. Phys.169 (2), 708-759. · Zbl 1047.76574
[83] Tsouris, C. & Tavlarides, L.L.1994Breakage and coalescence models for drops in turbulent dispersions. AIChE J.40 (3), 395-406.
[84] Unverdi, S.O. & Tryggvason, G.1992 A front-tracking method for viscous, incompressible, multi-fluid flows. · Zbl 0758.76047
[85] Vejražka, J., Zedníková, M. & Stanovskỳ, P.2018Experiments on breakup of bubbles in a turbulent flow. AIChE J.64 (2), 740-757.
[86] Veron, F.2015Ocean spray. Annu. Rev. Fluid Mech.47, 507-538.
[87] Villermaux, E.2020Fragmentation versus cohesion. J. Fluid Mech.898. · Zbl 1460.76810
[88] Wallace, D.W.R. & Wirick, C.D.1992Large air-sea gas fluxes associated with breaking waves. Nature356 (6371), 694.
[89] Wang, T., Wang, J. & Jin, Y.2003A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem. Engng Sci.58 (20), 4629-4637.
[90] Wang, Z., Yang, J. & Stern, F.2016High-fidelity simulations of bubble, droplet and spray formation in breaking waves. J. Fluid Mech.792, 307-327. · Zbl 1381.76365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.