×

Bubble pinch-off in turbulence. (English) Zbl 1456.76131

Summary: Although bubble pinch-off is an archetype of a dynamical system evolving toward a singularity, it has always been described in idealized theoretical and experimental conditions. Here, we consider bubble pinch-off in a turbulent flow representative of natural conditions in the presence of strong and random perturbations, combining laboratory experiments, numerical simulations, and theoretical modeling. We show that the turbulence sets the initial conditions for pinch-off, namely the initial bubble shape and flow field, but after the pinch-off starts, the turbulent time at the neck scale becomes much slower than the pinching dynamics: The turbulence freezes. We show that the average neck size, \( \overline{d} \), can be described by \(\overline{d} \sim ( t - t_0 )^\alpha \), where \(t_0\) is the pinch-off or singularity time and \(\alpha \approx 0.5\), in close agreement with the axisymmetric theory with no initial flow. While frozen, the turbulence can influence the pinch-off through the initial conditions. Neck shape oscillations described by a quasi-2-dimensional (quasi-2D) linear perturbation model are observed as are persistent eccentricities of the neck, which are related to the complex flow field induced by the deformed bubble shape. When turbulent stresses are less able to be counteracted by surface tension, a 3-dimensional (3D) kink-like structure develops in the neck, causing \(\overline{d}\) to escape its self-similar decrease. We identify the geometric controlling parameter that governs the appearance of these kink-like interfacial structures, which drive the collapse out of the self-similar route, governing both the likelihood of escaping the self-similar process and the time and length scale at which it occurs.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76F25 Turbulent transport, mixing

Software:

Gerris; PIVlab

References:

[1] L. Deike, W. K. Melville, S. Popinet, Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91-129 (2016). · Zbl 1462.76040
[2] L. Deike, W. K. Melville, Gas transfer by breaking waves. Geophys. Res. Lett. 45, 482-410 (2018).
[3] E. Villermaux, B. Bossa, Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5, 697-702 (2009). · doi:10.1038/nphys1340
[4] J. Eggers, E. Villermaux, Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008). · doi:10.1088/0034-4885/71/3/036601
[5] E. Villermaux, Fragmentation. Annu. Rev. Fluid Mech. 39, 419-446 (2007). · Zbl 1296.76164 · doi:10.1146/annurev.fluid.39.050905.110214
[6] J. O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1, 289-295 (1955).
[7] X. Shi, M. P. Brenner, S. R. Nagel, A cascade of structure in a drop falling from a faucet. Science 265, 219-222 (1994). · Zbl 1226.76011
[8] J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865-930 (1997). · Zbl 1205.37092 · doi:10.1103/RevModPhys.69.865
[9] M. Longuet-Higgins, B. Kerman, K. Lunde, The release of air bubbles from an underwater nozzle. J. Fluid Mech. 230, 365-390 (1991). · Zbl 0728.76112 · doi:10.1017/S0022112091000836
[10] D. Leppinen, J. R. Lister, Capillary pinch-off in inviscid fluids. Phys. Fluids 15, 568-578 (2003). · Zbl 1185.76225 · doi:10.1063/1.1537237
[11] J. C. Burton, R. Waldrep, P. Taborek, Scaling and instabilities in bubble pinch-off. Phys. Rev. Lett. 94, 184502 (2005). · doi:10.1103/PhysRevLett.94.184502
[12] S. T. Thoroddsen, T. G. Etoh, K. Takehara, Experiments on bubble pinch-off. Phys. Fluids 19, 042101 (2007). · Zbl 1146.76553 · doi:10.1063/1.2710269
[13] J. M. Gordillo, A. Sevilla, J. Rodríguez-Rodríguez, C. Martínez-Bazán, Axisymmetric bubble pinch-off at high Reynolds numbers. Phys. Rev. Lett. 95, 194501 (2005).
[14] J. Eggers, M. A. Fontelos, D. Leppinen, J. H. Snoeijer, Theory of the collapsing axisymmetric cavity. Phys. Rev. Lett. 98, 094502 (2007). · doi:10.1103/PhysRevLett.98.094502
[15] J. C. Burton, P. Taborek, Bifurcation from bubble to droplet behavior in inviscid pinch-off. Phys. Rev. Lett. 101, 214502 (2008).
[16] J. R. Castrejón-Pita et al. , Plethora of transitions during breakup of liquid filaments. Proc. Natl. Acad. Sci. U.S.A. 112, 4582-4587 (2015).
[17] A. Lagarde, C. Josserand, S. Protière, Oscillating path between self-similarities in liquid pinch-off. Proc. Natl. Acad. Sci. U.S.A. 115, 12371-12376 (2018).
[18] L. E. Schmidt, N. C. Keim, W. W. Zhang, S. R. Nagel, Memory-encoding vibrations in a disconnecting airbubble. Nat. Phys. 5, 343-346 (2009). · doi:10.1038/nphys1233
[19] N. C. Keim, Perturbed breakup of gas bubbles in water: Memory, gas flow, and coalescence. Phys. Rev. E 83, 056325 (2011).
[20] O. R. Enriquez et al. , Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water. J. Fluid Mech. 701, 40-58 (2012). · Zbl 1248.76139
[21] N. C. Keim, P. Møller, W. W. Zhang, S. R. Nagel, Breakup of air bubbles in water: Memory and breakdown of cylindrical symmetry. Phys. Rev. Lett. 97, 144503 (2006). · doi:10.1103/PhysRevLett.97.144503
[22] S. B. Pope, Turbulent Flows (Cambridge University Press, 2000). · Zbl 0966.76002
[23] G. I. Bell, “Taylor instability on cylinders and spheres in the small amplitude approximation” (Tech. Rep. LA-1321, Los Alamos National Laboratory, Santa Fe, NM, 1951).
[24] M. S. Plesset, On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 96-98 (1954). · Zbl 0055.18501 · doi:10.1063/1.1721529
[25] L. E. Schmidt, Azimuthal asymmetries and vibrational modes in bubble pinch-off https://arxiv.org/abs/1112.4440 (19 December 2011).
[26] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 5838-5866 (2009). · Zbl 1280.76020
[27] S. Popinet, Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 49-75 (2018). · Zbl 1384.76016
[28] S. Elghobashi, Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51, 217-244 (2019). · Zbl 1412.76046
[29] G. B. Deane, M. D. Stokes, Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839-844 (2002). · doi:10.1038/nature00967
[30] E. Variano, E. Cowen, A random-jet-stirred turbulence tank. J. Fluid Mech. 604, 1-32 (2008). · Zbl 1151.76358 · doi:10.1017/S0022112008000645
[31] W. Hwang, J. K. Eaton, Creating homogeneous and isotropic turbulence without a mean flow. Exp. Fluid 36, 444-454 (2004).
[32] W. Thielicke, E. J. Stamhuis, PIVlab - towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30 (2014).
[33] L. Deike, S. Popinet, W. Melville, Capillary effects on wave breaking. J. Fluid Mech. 769, 541-569 (2015). · Zbl 1431.76031
[34] L. Deike et al. , The dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3, 013603 (2018).
[35] C. Y. Lai, J. Eggers, L. Deike, Bubble bursting: Universal cavity and jet profiles. Phys. Rev. Lett. 121, 144501 (2018).
[36] D. J. Ruth, W. Mostert, S. Perrard, L. Deike, Bubble pinch-off in turbulence. Princeton University, DataSpace. http://arks.princeton.edu/ark:/88435/dsp014f16c5691. Deposited 23 October 2019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.