×

Inertial energy dissipation in shallow-water breaking waves. (English) Zbl 1460.76103

Summary: We present direct numerical simulations of breaking solitary waves in shallow water to quantify the energy dissipation during the active breaking time. We find that this dissipation can be predicted by an inertial model based on Taylor’s hypothesis as a function of the local wave height, depth and the beach slope. We obtain a relationship that gives the dissipation rate of a breaking wave on a shallow slope as a function of local breaking parameters. Next, we use empirical relations to relate the local wave parameters to the offshore conditions. This enables the energy dissipation to be predicted in terms of the initial conditions. We obtain good collapse of the numerical data with respect to the theoretical scaling.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography

Software:

Gerris; Basilisk
Full Text: DOI

References:

[1] Arthur, R. S. & Fringer, O. B.2014The dynamics of breaking internal solitary waves on slopes. J. Fluid Mech.761, 360-398.
[2] Battjes, J. A. & Janssen, Jpfm.1978Energy loss and set-up due to breaking of random waves. Coast. Engng Proc.1 (16), 569-587.
[3] Bell, J. B., Colella, P. & Glaz, H. M.1989A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys.85 (2), 257-283. · Zbl 0681.76030
[4] Boussinesq, J.1872Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. Series 217, 55-108. · JFM 04.0493.04
[5] Brackbill, J. U., Kothe, D. B. & Zemach, C.1992A continuum method for modeling surface tension. J. Comput. Phys.100 (2), 335-354. · Zbl 0775.76110
[6] Camfield, F. E. & Street, R. L1969aThe effects of bottom configuration on the deformation, breaking and run-up of solitary waves. In Coastal Engineering 1968, pp. 173-189. ASCE Library.
[7] Camfield, F. E. & Street, R. L.1969bShoaling of solitary waves on small slopes. J. Waterways Harbors Div.95 (1), 1-22.
[8] Chanson, H.2009Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. (B/Fluids)28 (2), 191-210. · Zbl 1156.76308
[9] Deike, L. & Melville, W. K.2018Gas transfer by breaking waves. Geophys. Res. Lett.45 (19), 10482-10492.
[10] Deike, L., Melville, W. K. & Popinet, S.2016Air entrainment and bubble statistics in breaking waves. J. Fluid Mech.801, 91-129. · Zbl 1462.76040
[11] Deike, L., Pizzo, N. & Melville, W. K.2017Lagrangian transport by breaking surface waves. J. Fluid Mech.829, 364-391. · Zbl 1460.76090
[12] Deike, L., Popinet, S. & Melville, W. K.2015Capillary effects on wave breaking. J. Fluid Mech.769, 541-569. · Zbl 1431.76031
[13] Derakhti, M., Banner, M. L. & Kirby, J. T.2018Predicting the breaking strength of gravity water waves in deep and intermediate depth. J. Fluid Mech.848, R2. · Zbl 1404.76039
[14] Derakhti, M., Kirby, J. T., Shi, F. & Ma, G.2016Wave breaking in the surf zone and deep-water in a non-hydrostatic RANS model. Part 1: organized wave motions. Ocean Model.107, 125-138.
[15] Derakhti, M. & Kirby, J. T.2014Bubble entrainment and liquid-bubble interaction under unsteady breaking waves. J. Fluid Mech.761, 464-506. · Zbl 1306.76049
[16] Derakhti, M. & Kirby, J. T.2016Breaking-onset, energy and momentum flux in unsteady focused wave packets. J. Fluid Mech.790, 553-581. · Zbl 1382.76072
[17] Drazen, D. A., Melville, W. K. & Lenain, L.2008Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech.611, 307-332. · Zbl 1151.76387
[18] Duncan, J. H.1981An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond. A377 (1770), 331-348.
[19] Elghobashi, S.2019Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech.51, 217-244. · Zbl 1412.76046
[20] Emarat, N., Forehand, D. I. M., Christensen, E. D. & Greated, C. A.2012Experimental and numerical investigation of the internal kinematics of a surf-zone plunging breaker. Eur. J. Mech. (B/Fluid)32, 1-16. · Zbl 1258.76009
[21] Fuster, D. & Popinet, S.2018An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys.374, 752-768. · Zbl 1416.76310
[22] Grilli, S. T., Svendsen, I. A. & Subramanya, R.1997Breaking criterion and characteristics for solitary waves on slopes. J. Waterways Port C-ASCE123 (3), 102-112.
[23] Grimshaw, R.1971The solitary wave in water of variable depth. Part 2. J. Fluid Mech.46 (3), 611-622. · Zbl 0222.76017
[24] Van Hooft, J. A., Popinet, S., Van Heerwaarden, C. C., Van Der Linden, S. J. A., De Roode, S. R. & Van De Wiel, B. J. H.2018Towards adaptive grids for atmospheric boundary-layer simulations. Boundary-Layer Meteorol.167 (3), 421-443.
[25] Iafrati, A.2009Numerical study of the effects of the breaking intensity on wave breaking flows. J. Fluid Mech.622, 371-411. · Zbl 1165.76327
[26] Iafrati, A.2011Energy dissipation mechanisms in wave breaking processes: spilling and highly aerated plunging breaking events. J. Geophys. Res.116 (C7), C07024.
[27] Iafrati, A., Babanin, A. & Onorato, M.2013Modulational instability, wave breaking, and formation of large-scale dipoles in the atmosphere. Phys. Rev. Lett.110 (18), 184504. · Zbl 1349.86003
[28] Kirby, J.2016Boussinesq models and their application to coastal processes across a wide range of scales. J. Waterways Port C-ASCE142 (6), 03116005.
[29] Kirby, J. T.2017Recent advances in nearshore wave, circulation, and sediment transport modeling. J. Mar. Res.75 (3), 263-300.
[30] Knowles, J. & Yeh, H.2018On shoaling of solitary waves. J. Fluid Mech.848, 1073-1097. · Zbl 1404.76057
[31] Lamb, H.1932Hydrodynamics. Cambridge University Press. · JFM 58.1298.04
[32] Le Métayer, O., Gavrilyuk, S. & Hank, S.2010A numerical scheme for the Green-Naghdi model. J. Comput. Phys.229 (6), 2034-2045. · Zbl 1303.76105
[33] Li, Y. & Raichlen, F.2001Solitary wave runup on plane slopes. J. Waterways Port Coast. ASCE127 (1), 33-44.
[34] Lin, N. & Shullman, E.2017Dealing with hurricane surge flooding in a changing environment: part I. Risk assessment considering storm climatology change, sea level rise, and coastal development. Stochastic Environ. Res. Risk Assessment31 (9), 2379-2400.
[35] Lopez-Herrera, J. M., Popinet, S. & Castrejón-Pita, A. A.2019An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of slightly viscoelastic droplets. J. Non-Newtonian Fluid Mech.264, 144-158.
[36] Lubin, P. & Caltagirone, J.-P.2010Large eddy simulation of the hydrodynamics generated by breaking waves. In Advances in Numerical Simulation of Nonlinear Water Waves, pp. 575-604. World Scientific. · Zbl 1235.76047
[37] Lubin, P. & Lemonnier, H.2004Test-case no 33: Propagation of solitary waves in constant depths over horizontal beds (PA, PN, PE). Multiphase Sci. Technol.16 (1-3), 239-250.
[38] Martins, K., Blenkinsopp, C. E., Deigaard, R. & Power, H. E.2018Energy dissipation in the inner surf zone: New insights from Li DAR-based roller geometry measurements. J. Geophys. Res.-Oceans123, 3386-3407.
[39] Mccowan, J.1894XXXIX. On the highest wave of permanent type. London, Edinb. Dublin Philos. Mag. J. Sci.38 (233), 351-358. · JFM 25.1478.01
[40] Melville, W. K.1996The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech.28 (1), 279-321.
[41] Memery, L. & Merlivat, L.1985Modelling of gas flux through bubbles at the air-water interface. Tellus B: Chem. Phys. Meteorol.37 (4-5), 272-285.
[42] Monahan, E. C. & Dam, H. G.2001Bubbles: an estimate of their role in the global oceanic flux of carbon. J. Geophys. Res.106 (C5), 9377-9383.
[43] Pedersen, G. K., Lindstrøm, E., Bertelsen, A. F., Jensen, A., Laskovski, D. & Sælevik, G.2013Runup and boundary layers on sloping beaches. Phys. Fluids25 (1), 012102. · Zbl 1310.76057
[44] Peregrine, D. H.1998Surf zone currents. Theor. Comput. Fluid Dyn.10 (1-4), 295-309. · Zbl 0910.76008
[45] Peregrine, D. H.1967Long waves on a beach. J. Fluid Mech.27 (4), 815-827. · Zbl 0163.21105
[46] Perlin, M., Choi, W. & Tian, Z.2013Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech.45, 115-145. · Zbl 1359.76066
[47] Pizzo, N. E. & Melville, W. K.2013Vortex generation by deep-water breaking waves. J. Fluid Mech.734, 198-218. · Zbl 1294.76078
[48] Popinet, S.2003Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys.190 (2), 572-600. · Zbl 1076.76002
[49] Popinet, S.2009An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys.228 (16), 5838-5866. · Zbl 1280.76020
[50] Popinet, S.2015A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations. J. Comput. Phys.302, 336-358. · Zbl 1349.76377
[51] Popinet, S.2019 Basilisk flow solver and PDE library. Available at: http://basilisk.fr.
[52] Rapp, R. J. & Melville, W. K.1990Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A331 (1622), 735-800.
[53] Robertson, B., Hall, K., Zytner, R. & Nistor, I.2013Breaking waves: Review of characteristic relationships. Coast. Engng J.55 (01), 1350002.
[54] Romero, L., Melville, W. K. & Kleiss, J. M.2012Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr.42 (9), 1421-1444.
[55] Scardovelli, R. & Zaleski, S.1999Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech.31 (1), 567-603.
[56] Song, C. & Sirviente, A. I.2004A numerical study of breaking waves. Phys. Fluids16 (7), 2649-2667. · Zbl 1186.76493
[57] Synolakis, C. E.1987The runup of solitary waves. J. Fluid Mech.185, 523-545. · Zbl 0633.76021
[58] Synolakis, C. E. & Skjelbreia, J. E.1993Evolution of maximum amplitude of solitary waves on plane beaches. J. Waterways Port Coast. ASCE119 (3), 323-342.
[59] Tanaka, M., Dold, J. W., Lewy, M. & Peregrine, D. H.1987Instability and breaking of a solitary wave. J. Fluid Mech.185, 235-248. · Zbl 0633.76045
[60] Taylor, G. I.1935Statistical theory of turbulence. Proc. R. Soc. Lond. A151 (873), 421-444. · JFM 61.0926.02
[61] Thornton, E. B. & Guza, R. T.1983Transformation of wave height distribution. J. Geophys. Res.88 (C10), 5925-5938.
[62] Tian, Z., Perlin, M. & Choi, W.2011Frequency spectra evolution of two-dimensional focusing wave groups in finite depth water. J. Fluid Mech.688, 169-194. · Zbl 1241.76095
[63] Vassilicos, J. C.2015Dissipation in turbulent flows. Annu. Rev. Fluid Mech.47, 95-114.
[64] Yamada, H. & Shiotani, T.1968 On the highest water waves of permanent type.
[65] Yin, J., Lin, N. & Yu, D.2016Coupled modeling of storm surge and coastal inundation: a case study in New York City during Hurricane Sandy. Water Resour. Res.52 (11), 8685-8699.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.