×

Supraconservative finite-volume methods for the Euler equations of subsonic compressible flow. (English) Zbl 1477.65147

A general (necessary and sufficient) requirements for a finite volume method to convectively preserve discrete kinetic energy is presented. The key ingredient is a discrete consistency between the convective term in the momentum equation and the terms in the other conservation equations (mass, internal energy). As examples, the Euler equations for subsonic (in)compressible flow are discretized with such supraconservative finite-volume methods on structured and unstructured meshes.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76G25 General aerodynamics and subsonic flows
35Q31 Euler equations
Full Text: DOI

References:

[1] R. Agarwal, Computational fluid dynamics of whole-body aircraft, Annu. Rev. Fluid Mech., 31 (1999), pp. 125-169.
[2] S. C. Anco and G. Bluman, Direct construction of conservation laws from field equations, Phys. Rev. Lett., 78 (1997), pp. 2869-2873. · Zbl 0948.58015
[3] A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I, J. Comput. Phys., 1 (1966), pp. 119-143. · Zbl 0147.44202
[4] A. Arakawa and V. R. Lamb, A potential enstrophy and energy conserving scheme for the shallow-water equations, Mon. Weather Rev., 109 (1981), pp. 18-36.
[5] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, Grad. Texts in Math. 60, Springer Science & Business Media, 1988.
[6] K. Asthana and A. Jameson, High-order flux reconstruction schemes with minimal dispersion and dissipation, J. Sci. Comput., 62 (2015), pp. 913-944. · Zbl 1329.65217
[7] T. Barth and M. Ohlberger, Finite volume methods: Foundation and analysis, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst, and T. J. R. Hughes, eds., John Wiley and Sons, 2004.
[8] M. A. Belenli, L. G. Rebholz, and F. Tone, A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements, Appl. Math. Lett., 45 (2015), pp. 98-102. · Zbl 1311.76044
[9] G. Blaisdell, N. N. Mansour, and W. C. Reynolds, Numerical Simulations of Compressible Homogeneous Turbulence, Report TF-50, Thermosciences Division, Mechanical Engineering, Stanford University, 1991.
[10] G. Blaisdell, E. Spyropoulos, and J. Qin, The effect of the formulation of nonlinear terms on aliasing errors in spectral methods, Appl. Numer. Math., 21 (1996), pp. 207-219. · Zbl 0858.76060
[11] P. B. Bochev and J. M. Hyman, Principles of mimetic discretizations of differential operators, in Compatible Spatial Discretizations, Springer, 2006, pp. 89-119. · Zbl 1110.65103
[12] J. Brouwer, J. Reiss, and J. Sesterhenn, Conservative time integrators of arbitrary order for skew-symmetric finite-difference discretizations of compressible flow, Comput. Fluids, 100 (2014), pp. 1-12. · Zbl 1391.76463
[13] K. Bryan, A scheme for numerical integration of the equations of motion on an irregular grid free of nonlinear instability, Mon. Weather Rev., 94 (1966), pp. 38-40.
[14] D. E. Burton, Consistent Finite-Volume Discretization of Hydrodynamic Conservation Laws for Unstructured Grids, Tech. Report UCRL-JC-118788, Lawrence Livermore National Laboratory, 1994.
[15] F. Cadieux, M. Barad, and C. Kiris, A high-order kinetic energy conserving scheme for compressible large-eddy simulation, in Proc. 10th International Conference on Computational Fluid Dynamics (ICCFD10), Barcelona, 2018, paper ICCFD10-2018-100.
[16] F. Capuano, G. Coppola, L. Rández, and L. de Luca, Explicit Runge-Kutta schemes for incompressible flow with improved energy-conservation properties, J. Comput. Phys., 328 (2017), pp. 86-94. · Zbl 1406.76066
[17] F. Capuano, F. Trias, and G. Coppola, Minisymposium MS161: Discrete conservation properties in CFD, in 14th WCCM-ECCOMAS Congress 2020, F. Chinesta, R. Abgrall, O. Allix, and M. Kaliske, eds., 2021.
[18] E. J. Caramana, D. E. Burton, M. J. Shashkov, and P. P. Whalen, The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146 (1998), pp. 227-262. · Zbl 0931.76080
[19] J. E. Castillo and G. F. Miranda, Mimetic Discretization Methods, Chapman and Hall/CRC, 2013.
[20] P. Castonguay, D. M. Williams, P. E. Vincent, and A. Jameson, Energy stable flux reconstruction schemes for advection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 267 (2013), pp. 400-417. · Zbl 1286.65119
[21] G. Caviglia and A. Morro, Conservation laws for incompressible fluids, Internat. J. Math. Math. Sci., 12 (1989), pp. 377-384. · Zbl 0673.76003
[22] P. Chandrashekar, Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14 (2013), pp. 1252-1286. · Zbl 1373.76121
[23] S. Charnyi, T. Heister, M. A. Olshanskii, and L. G. Rebholz, On conservation laws of Navier-Stokes Galerkin discretizations, J. Comput. Phys., 337 (2017), pp. 289-308. · Zbl 1415.65222
[24] S. Charnyi, T. Heister, M. A. Olshanskii, and L. G. Rebholz, Efficient discretizations for the EMAC formulation of the incompressible Navier-Stokes equations, Appl. Numer. Math., 141 (2019), pp. 220-233. · Zbl 1478.65082
[25] A. F. Cheviakov and M. Oberlack, Generalized Ertel’s theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier-Stokes equations, J. Fluid Mech., 760 (2014), pp. 368-386. · Zbl 1331.76008
[26] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications, Springer Science & Business Media, 2012.
[27] G. Coppola, F. Capuano, and L. de Luca, Discrete energy-conservation properties in the numerical solution of the Navier-Stokes equations, Appl. Mech. Rev., 71 (2019), art. 010803, https://doi.org/10.1115/1.4042820.
[28] G. Coppola, F. Capuano, S. Pirozzoli, and L. de Luca, Numerically stable formulations of convective terms for turbulent compressible flows, J. Comput. Phys., 382 (2019), pp. 86-104, https://doi.org/10.1016/j.jcp.2019.01.007. · Zbl 1451.76081
[29] B. R. Cousins, L. G. Rebholz, and N. E. Wilson, Enforcing energy, helicity and strong mass conservation in finite element computations for incompressible Navier-Stokes simulations, Appl. Math. Comput., 218 (2011), pp. 1208-1221. · Zbl 1432.76077
[30] B. Da Veiga, J. Droniou, and G. Manzini, A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems, IMA J. Numer. Anal., 31 (2010), pp. 1357-1401. · Zbl 1263.65102
[31] M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, Discrete Exterior Calculus, preprint, https://arxiv.org/abs/math/0508341, 2005.
[32] S. Dubinkina and J. Frank, Statistical mechanics of Arakawa’s discretizations, J. Comput. Phys., 227 (2007), pp. 1286-1305. · Zbl 1130.82005
[33] F. Ducros, F. Laporte, T. Souleres, V. Guinot, P. Moinat, and B. Caruelle, High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows, J. Comput. Phys., 161 (2000), pp. 114-139. · Zbl 0972.76066
[34] A. K. Edoh, N. L. Mundis, C. L. Merkle, A. R. Karagozian, and V. Sankaran, Comparison of artificial-dissipation and solution-filtering stabilization schemes for time-accurate simulations, J. Comput. Phys., 375 (2018), pp. 1424-1450. · Zbl 1416.76209
[35] S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun, Stable, circulation-preserving, simplicial fluids, ACM Trans. Graph., 26 (2007), p. 4.
[36] H. Esqueda, R. Herrera, S. Botello, and M. A. Moreles, A Geometric Description of Discrete Exterior Calculus for General Triangulations, preprint, https://arxiv.org/abs/1802.01158, 2018.
[37] W. J. Feiereisen, W. C. Reynolds, and J. H. Ferziger, Numerical Simulation of a Compressible, Homogeneous, Turbulent Shear Flow, Report TF-13, Thermosciences Division, Mechanical Engineering, Stanford University, 1981.
[38] F. N. Felten and T. S. Lund, Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow, J. Comput. Phys., 215 (2006), pp. 465-484. · Zbl 1173.76382
[39] J. Frank and S. Reich, Conservation properties of smoothed particle hydrodynamics applied to the shallow water equation, BIT, 43 (2003), pp. 41-55. · Zbl 1023.76037
[40] K. Fukagata and N. Kasagi, Highly energy-conservative finite difference method for the cylindrical coordinate system, J. Comput. Phys., 181 (2002), pp. 478-498. · Zbl 1178.76260
[41] D. Fuster, An energy preserving formulation for the simulation of multiphase turbulent flows, J. Comput. Phys., 235 (2013), pp. 114-128.
[42] G. J. Gassner, A kinetic energy preserving nodal discontinuous Galerkin spectral element method, Internat. J. Numer. Methods Fluids, 76 (2014), pp. 28-50. · Zbl 1455.76142
[43] M. Gerritsen and P. Olsson, Designing an efficient solution strategy for fluid flows: 1. A stable high order finite difference scheme and sharp shock resolution for the Euler equations, J. Comput. Phys., 129 (1996), pp. 245-262. · Zbl 0899.76281
[44] I. O. Götze, H. Noguchi, and G. Gompper, Relevance of angular momentum conservation in mesoscale hydrodynamics simulations, Phys. Rev. E, 76 (2007), art. 046705.
[45] M. Griebel, C. Rieger, and A. Schier, Upwind schemes for scalar advection-dominated problems in the discrete exterior calculus, in Transport Processes at Fluidic Interfaces, Springer, 2017, pp. 145-175. · Zbl 1391.76545
[46] J. L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows, J. Comput. Phys., 165 (2000), pp. 167-188. · Zbl 0994.76051
[47] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit, Comput. Fluids, 28 (1999), pp. 63-86. · Zbl 0963.76062
[48] F. Ham, K. Mattsson, and G. Iaccarino, Accurate and stable finite volume operators for unstructured flow solvers, in Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University, 2006, pp. 243-261.
[49] F. E. Ham, F. S. Lien, and A. B. Strong, A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids, J. Comput. Phys., 177 (2002), pp. 117-133. · Zbl 1066.76044
[50] F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8 (1965), pp. 2182-2189. · Zbl 1180.76043
[51] T. Heister, M. A. Olshanskii, and L. G. Rebholz, Unconditional long-time stability of a velocity-vorticity method for the 2D Navier-Stokes equations, Numer. Math., 135 (2017), pp. 143-167. · Zbl 1387.76052
[52] A. N. Hirani, K. B. Nakshatrala, and J. H. Chaudhry, Numerical method for Darcy flow derived using discrete exterior calculus, Int. J. Comput. Methods Eng. Sci. Mech., 16 (2015), pp. 151-169. · Zbl 07871409
[53] A. E. Honein and P. Moin, Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201 (2004), pp. 531-545. · Zbl 1061.76044
[54] K. Horiuti, Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow, J. Comput. Phys., 71 (1987), pp. 343-370. · Zbl 0617.76062
[55] H. Huynh, Z. J. Wang, and P. E. Vincent, High-order methods for computational fluid dynamics: A brief review of compact differential formulations on unstructured grids, Comput. Fluids, 98 (2014), pp. 209-220. · Zbl 1390.65123
[56] J. M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Comput. Math. Appl., 33 (1997), pp. 81-104. · Zbl 0868.65006
[57] S. S. Jain and P. Moin, A kinetic energy- and entropy-preserving scheme for the simulation of compressible two-phase turbulent flows, in Center for Turbulence Research Annual Research Briefs, 2020, pp. 299-312.
[58] A. Jameson, Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes, J. Sci. Comput., 34 (2008), pp. 188-208. · Zbl 1133.76031
[59] A. Jameson, W. Schmidt, and E. Turkel, Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes, Paper 81-1259, AIAA, 1981.
[60] L. Jofre, O. Lehmkuhl, J. Ventosa, F. X. Trias, and A. Oliva, Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations, Numer. Heat Transfer B Fund., 65 (2014), pp. 53-79.
[61] R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: One-dimensional flow, J. Comput. Phys., 121 (1995), pp. 213-237. · Zbl 0842.76053
[62] J. C. Kok, A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids, J. Comput. Phys., 228 (2009), pp. 6811-6832. · Zbl 1261.76020
[63] W. Layton, C. C. Manica, M. Neda, M. Olshanskii, and L. G. Rebholz, On the accuracy of the rotation form in simulations of the Navier-Stokes equations, J. Comput. Phys., 228 (2009), pp. 3433-3447. · Zbl 1161.76030
[64] O. Lehmkuhl, R. Borrell, I. Rodríguez, C. D. Pérez-Segarra, and A. Oliva, Assessment of the symmetry-preserving regularization model on complex flows using unstructured grids, Comput. Fluids, 60 (2012), pp. 108-116. · Zbl 1365.76090
[65] O. Lehmkuhl, G. Houzeaux, H. Owen, G. Chrysokentis, and I. Rodriguez, A low-dissipation finite element scheme for scale resolving simulations of turbulent flows, J. Comput. Phys., 390 (2019), pp. 51-65. · Zbl 1452.76091
[66] O. Lehmkuhl, I. Rodríguez, R. Borrell, J. Chiva, and A. Oliva, Unsteady forces on a circular cylinder at critical Reynolds numbers, Phys. Fluids, 26 (2014), art. 125110.
[67] D. K. Lilly, On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems, Mon. Weather Rev., 93 (1965), pp. 11-26.
[68] K. Lipnikov, G. Manzini, and M. Shashkov, Mimetic finite difference method, J. Comput. Phys., 257 (2014), pp. 1163-1227. · Zbl 1352.65420
[69] J.-G. Liu and W.-C. Wang, Convergence analysis of the energy and helicity preserving scheme for axisymmetric flows, SIAM J. Numer. Anal., 44 (2006), pp. 2456-2480, https://doi.org/10.1137/050639314. · Zbl 1130.76053
[70] A. Llor, A. Claisse, and C. Fochesato, Energy preservation and entropy in Lagrangian space-and time-staggered hydrodynamic schemes, J. Comput. Phys., 309 (2016), pp. 324-349. · Zbl 1351.76171
[71] R. Loubère, M. Shashkov, and B. Wendroff, Volume consistency in a staggered grid Lagrangian hydrodynamics scheme, J. Comput. Phys., 227 (2008), pp. 3731-3737. · Zbl 1147.76044
[72] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002. · Zbl 0983.76001
[73] T. A. Manteuffel and A. B. White, Jr., The numerical solution of second-order boundary value problems on nonuniform meshes, Math. Comp., 47 (1986), pp. 511-535. · Zbl 0635.65092
[74] K. Mattsson and J. Nordström, Summation by parts operators for finite difference approximations of second derivatives, J. Comput. Phys., 199 (2004), pp. 503-540. · Zbl 1071.65025
[75] H. K. Moffatt and A. Tsinober, Helicity in laminar and turbulent flow, Annu. Rev. Fluid Mech., 24 (1992), pp. 281-312. · Zbl 0751.76018
[76] M. S. Mohamed, A. N. Hirani, and R. Samtaney, Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes, J. Comput. Phys., 312 (2016), pp. 175-191. · Zbl 1351.76070
[77] Y. Morinishi, Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows, J. Comput. Phys., 229 (2010), pp. 276-300. · Zbl 1375.76113
[78] Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143 (1998), pp. 90-124. · Zbl 0932.76054
[79] Y. Morinishi, O. V. Vasilyev, and T. Ogi, Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations, J. Comput. Phys., 197 (2004), pp. 686-710. · Zbl 1079.76602
[80] E. Noether, Invarianten beliebiger Differentialausdrücke, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, math.-phys. Klasse, 1918 (1918), pp. 37-44. · JFM 46.0675.01
[81] J. Nordström, J. Gong, E. van der Weide, and M. Svärd, A stable and conservative high order multi-block method for the compressible Navier-Stokes equations, J. Comput. Phys., 228 (2009), pp. 9020-9035. · Zbl 1375.76036
[82] M. A. Olshanskii and L. G. Rebholz, Velocity-vorticity-helicity formulation and a solver for the Navier-Stokes equations, J. Comput. Phys., 229 (2010), pp. 4291-4303. · Zbl 1334.76083
[83] M. A. Olshanskii, L. G. Rebholz, and A. J. Salgado, On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions, Discrete Contin. Dyn. Syst., 38 (2018), pp. 3459-3477. · Zbl 1397.35178
[84] P. Olsson, Summation by parts, projections, and stability. I, Math. Comp., 64 (1995), pp. 1035-1065. · Zbl 0828.65111
[85] P. Olsson, Summation by parts, projections, and stability. II, Math. Comp., 64 (1995), pp. 1473-1493. · Zbl 0848.65064
[86] P. J. Olver, A nonlinear Hamiltonian structure for the Euler equations, J. Math. Anal. Appl., 89 (1982), pp. 233-250. · Zbl 0534.76035
[87] G. T. Oud, D. R. van der Heul, C. Vuik, and R. A. W. M. Henkes, A fully conservative mimetic discretization of the Navier-Stokes equations in cylindrical coordinates with associated singularity treatment, J. Comput. Phys., 325 (2016), pp. 314-337. · Zbl 1375.76114
[88] A. Palha and M. Gerritsma, A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations, J. Comput. Phys., 328 (2017), pp. 200-220. · Zbl 1406.76064
[89] M. Parsani, M. H. Carpenter, T. C. Fisher, and E. J. Nielsen, Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier-Stokes equations, SIAM J. Sci. Comput., 38 (2016), pp. A3129-A3162, https://doi.org/10.1137/15M1043510. · Zbl 1457.65149
[90] B. Perot, Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys., 159 (2000), pp. 58-89. · Zbl 0972.76068
[91] J. B. Perot, Discrete conservation properties of unstructured mesh schemes, Annu. Rev. Fluid Mech., 43 (2011), pp. 299-318. · Zbl 1299.76127
[92] J. B. Perot and V. Subramanian, Discrete calculus methods for diffusion, J. Comput. Phys., 224 (2007), pp. 59-81. · Zbl 1120.65325
[93] J. B. Perot and C. J. Zusi, Differential forms for scientists and engineers, J. Comput. Phys., 257 (2014), pp. 1373-1393. · Zbl 1351.53001
[94] N. A. Phillips, The general circulation of the atmosphere: A numerical experiment, Quart. J. Roy. Meteorol. Soc., 82 (1956), pp. 123-164.
[95] N. A. Phillips, An example of non-linear computational instability, in The Atmosphere and the Sea in Motion, B. Bolin, ed., The Rockefeller Institute Press, 1959, pp. 501-504.
[96] S. A. Piacsek and G. P. Williams, Conservation properties of convection difference schemes, J. Comput. Phys., 6 (1970), pp. 392-405. · Zbl 0221.65185
[97] S. Pirozzoli, Generalized conservative approximations of split convective derivative operators, J. Comput. Phys., 229 (2010), pp. 7180-7190. · Zbl 1426.76485
[98] S. Pirozzoli, Numerical methods for high-speed flows, Annu. Rev. Fluid Mech., 43 (2011), pp. 163-194. · Zbl 1299.76103
[99] S. Pirozzoli, Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates, J. Comput. Phys., 230 (2011), pp. 2997-3014. · Zbl 1316.76064
[100] L. G. Rebholz, An energy- and helicity-conserving finite element scheme for the Navier-Stokes equations, SIAM J. Numer. Anal., 45 (2007), pp. 1622-1638, https://doi.org/10.1137/060651227. · Zbl 1141.76039
[101] J. Reiss, A family of energy stable, skew-symmetric finite difference schemes on collocated grids, J. Sci. Comput., 65 (2015), pp. 1-18.
[102] J. Reiss and J. Sesterhenn, A conservative, skew-symmetric finite difference scheme for the compressible Navier-Stokes equations, Comput. Fluids, 101 (2014), pp. 208-219. · Zbl 1391.76490
[103] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, 2nd ed., John Wiley & Sons, 1967. · Zbl 0155.47502
[104] I. Rodríguez, O. Lehmkuhl, J. Chiva, R. Borrell, and A. Oliva, On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding, Int. J. Heat Fluid Flow, 55 (2015), pp. 91-103.
[105] W. Rozema, Low-Dissipation Methods and Models for the Simulation of Turbulent Subsonic Flow, Ph.D. thesis, University of Groningen, 2015.
[106] W. Rozema, H. J. Bae, P. Moin, and R. Verstappen, Minimum-dissipation models for large-eddy simulation, Phys. Fluids, 27 (2015), art. 085107.
[107] W. Rozema, J. C. Kok, A. E. P. Veldman, and R. W. C. P. Verstappen, Numerical simulation with low artificial dissipation of transitional flow over a delta wing, J. Comput. Phys., 405 (2020), art. 109182, https://doi.org/10.1016/j.jcp.2019.109182.
[108] W. Rozema, J. C. Kok, R. W. C. P. Verstappen, and A. E. P. Veldman, A symmetry-preserving discretisation and regularisation model for compressible flow with application to turbulent channel flow, J. Turbul., 15 (2014), pp. 386-410.
[109] W. Rozema, R. W. C. P. Verstappen, J. C. Kok, and A. E. P. Veldman, Discretizations and regularization models for compressible flow that preserve the skew-symmetry of convective transport, in Proc. 6th European Conference on Computational Fluid Dynamics (ECFD VI), 2014.
[110] W. Rozema, R. W. C. P. Verstappen, J. C. Kok, and A. E. P. Veldman, Low-dissipation simulation methods and models for turbulent subsonic flow, Arch. Comput. Methods Eng., 27 (2020), pp. 299-330, https://doi.org/10.1007/s11831-018-09307-7.
[111] A. A. Samarskii, V. F. Tishkin, A. P. Favorski, and M. Y. Shashkov, On the representation of difference schemes of mathematical physics in operator form, Dokl. Akad. Nauk, 258 (1981), pp. 1092-1096. · Zbl 0532.65068
[112] B. Sanderse, Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 233 (2013), pp. 100-131. · Zbl 1286.76034
[113] N. D. Sandham, Q. Li, and H. C. Yee, Entropy splitting for high-order numerical simulation of compressible turbulence, J. Comput. Phys., 178 (2002), pp. 307-322. · Zbl 1139.76332
[114] J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: An overview, Acta Numer., 1 (1992), pp. 243-286. · Zbl 0762.65043
[115] E. Schillaci, L. Jofre, N. Balcázar, O. Antepara, and A. Oliva, A low-dissipation convection scheme for the stable discretization of turbulent interfacial flow, Comput. Fluids, 153 (2017), pp. 102-117. · Zbl 1390.76511
[116] D. Serre, Helicity and other conservation laws in perfect fluid motion, C. R. Mécanique, 346 (2018), pp. 175-183.
[117] Shashank, J. Larsson, and G. Iaccarino, A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit, J. Comput. Phys., 229 (2010), pp. 4425-4430. · Zbl 1305.76080
[118] M. Shashkov and S. Steinberg, Support-operator finite-difference algorithms for general elliptic problems, J. Comput. Phys., 118 (1995), pp. 131-151. · Zbl 0824.65101
[119] M. Sommer and S. Reich, Phase space volume conservation under space and time discretization schemes for the shallow-water equations, Mon. Weather Rev., 138 (2010), pp. 4229-4236.
[120] C. Sorgentone, C. La Cognata, and J. Nordström, A new high order energy and enstrophy conserving Arakawa-like Jacobian differential operator, J. Comput. Phys., 301 (2015), pp. 167-177. · Zbl 1349.76534
[121] G. S. Stelling and S. P. A. Duinmeijer, A staggered conservative scheme for every Froude number in rapidly varied shallow water flows, Internat. J. Numer. Methods Fluids, 43 (2003), pp. 1329-1354. · Zbl 1062.76541
[122] A. L. Stewart and P. J. Dellar, An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force, J. Comput. Phys., 313 (2016), pp. 99-120. · Zbl 1349.65335
[123] B. Strand, Summation by parts for finite difference approximations for \(d/dx\), J. Comput. Phys., 110 (1994), pp. 47-67. · Zbl 0792.65011
[124] P. K. Subbareddy and G. V. Candler, A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows, J. Comput. Phys., 228 (2009), pp. 1347-1364. · Zbl 1157.76029
[125] Y. Sun and Z. J. Wang, Evaluation of discontinuous Galerkin and spectral volume methods for scalar and system conservation laws on unstructured grids, Internat. J. Numer. Methods Fluids, 45 (2004), pp. 819-838. · Zbl 1085.76547
[126] Y. Sun, Z. J. Wang, and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow, J. Comput. Phys., 215 (2006), pp. 41-58. · Zbl 1140.76381
[127] M. Svärd, K. Mattsson, and J. Nordström, Steady-state computations using summation-by-parts operators, J. Sci. Comput., 24 (2005), pp. 79-95. · Zbl 1080.76044
[128] M. Svärd and J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268 (2014), pp. 17-38. · Zbl 1349.65336
[129] E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp., 43 (1984), pp. 369-381. · Zbl 0587.65058
[130] E. Tadmor, Skew-selfadjoint form for systems of conservation laws, J. Math. Anal. Appl., 103 (1984), pp. 428-442. · Zbl 0599.35102
[131] M. A. Taylor, J. Edwards, S. Thomas, and R. Nair, A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid, J. Phys. Conf. Ser., 78 (2007), p. 012074.
[132] E. Tonti, Why starting from differential equations for computational physics?, J. Comput. Phys., 257 (2014), pp. 1260-1290. · Zbl 1351.35002
[133] F. X. Trias, O. Lehmkuhl, A. Oliva, C. D. Pérez-Segarra, and R. W. C. P. Verstappen, Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J. Comput. Phys., 258 (2014), pp. 246-267. · Zbl 1349.65386
[134] X. Trias, M. Soria, A. Oliva, and R. Verstappen, Regularization models for the simulation of turbulence in a differentially heated cavity, in Proc. European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006), P. Wesseling, E. On͂ate, and J. Periaux, eds., Egmond aan Zee, 2006, paper 88.
[135] N. Valle, F. X. Trias, and J. Castro, An energy-preserving level set method for multiphase flows, J. Comput. Phys., 400 (2020), art. 108991. · Zbl 1453.76113
[136] J. J. A. M. Van Os and R. E. Uittenbogaard, Towards the ultimate variance-conserving convection scheme, J. Comput. Phys., 197 (2004), pp. 197-214. · Zbl 1106.76430
[137] B. van’t Hof and A. E. P. Veldman, Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations, J. Comput. Phys., 231 (2012), pp. 4723-4744. · Zbl 1245.76074
[138] B. van’t Hof and M. J. Vuik, Symmetry-preserving finite-difference discretizations of arbitrary order on structured curvilinear staggered grids, J. Comput. Sci., 36 (2019), art. 101008.
[139] O. V. Vasilyev, High order difference schemes on non-uniform meshes with good conservation properties, J. Comput. Phys., 157 (2000), pp. 746-761. · Zbl 0959.76063
[140] T. Vazquez-Gonzalez, A. Llor, and C. Fochesato, A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid, Int. J. Multiph. Flow, 132 (2020), art. 103324.
[141] A. E. P. Veldman, “Missing” boundary conditions? Discretize first, substitute next, and combine later, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 82-91, https://doi.org/10.1137/0911005. · Zbl 0683.76028
[142] A. E. P. Veldman, A general condition for kinetic-energy preserving discretization of flow transport equations, J. Comput. Phys., 398 (2019), art. 108894, https://doi.org/10.1016/j.jcp.2019.108894. · Zbl 1453.65262
[143] A. E. P. Veldman and K. Rinzema, Playing with nonuniform grids, J. Engrg. Math., 26 (1991), pp. 119-130. · Zbl 0747.76073
[144] R. W. C. P. Verstappen and A. E. P. Veldman, Direct numerical simulation of turbulence at lesser costs, J. Engrg. Math., 32 (1997), pp. 143-159. · Zbl 0911.76072
[145] R. W. C. P. Verstappen and A. E. P. Veldman, Spectro-consistent discretization: A challenge to RANS and LES, J. Engrg. Math., 34 (1998), pp. 163-179. · Zbl 0917.76059
[146] R. W. C. P. Verstappen and A. E. P. Veldman, Symmetry-preserving discretization of turbulent flow, J. Comput. Phys., 187 (2003), pp. 343-368. · Zbl 1062.76542
[147] P. E. Vincent, P. Castonguay, and A. Jameson, A new class of high-order energy stable flux reconstruction schemes, J. Sci. Comput., 47 (2011), pp. 50-72. · Zbl 1433.76094
[148] Z. J. Wang and H. Gao, A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids, J. Comput. Phys., 228 (2009), pp. 8161-8186. · Zbl 1173.65343
[149] D. M. Williams and A. Jameson, Energy stable flux reconstruction schemes for advection-diffusion problems on tetrahedra, J. Sci. Comput., 59 (2014), pp. 721-759. · Zbl 1303.65076
[150] J. G. Wissink, On unconditional conservation of kinetic energy by finite-difference discretizations of the linear and non-linear convection equation, Comput. & Fluids, 33 (2004), pp. 315-343. · Zbl 1062.76543
[151] H. C. Yee, M. Vinokur, and M. J. Djomehri, Entropy splitting and numerical dissipation, J. Comput. Phys., 162 (2000), pp. 33-81. · Zbl 0987.65086
[152] T. A. Zang, On the rotation and skew-symmetric forms for incompressible flow simulations, Appl. Numer. Math., 7 (1991), pp. 27-40. · Zbl 0708.76071
[153] X. Zhang, D. Schmidt, and B. Perot, Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics, J. Comput. Phys., 175 (2002), pp. 764-791. · Zbl 1018.76036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.