×

Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows. (English) Zbl 1375.76113

Summary: The form of convective terms for compressible flow equations is discussed in the same way as for an incompressible one by Y. Morinishi et al. [J. Comput. Phys. 143, No. 1, 90–124 (1998; Zbl 0932.76054)], and fully conservative finite difference schemes suitable for shock-free unsteady compressible flow simulations are proposed. Commutable divergence, advective, and skew-symmetric forms of convective terms are defined by including the temporal derivative term for compressible flow. These forms are analytically equivalent if the continuity is satisfied, and the skew-symmetric form is secondary conservative without the aid of the continuity, while the divergence form is primary conservative. The relations between the present and existing quasi-skew-symmetric forms are also revealed. Commutable fully discrete finite difference schemes of convection are then derived in a staggered grid system, and they are fully conservative provided that the corresponding discrete continuity is satisfied. In addition, a semi-discrete convection scheme suitable for compact finite difference is presented based on the skew-symmetric form. The conservation properties of the present schemes are demonstrated numerically in a three-dimensional periodic inviscid flow. The proposed fully discrete fully conservative second-order accurate scheme is also used to perform the DNS of compressible isotropic turbulence and the simulation of open cavity flow.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 0932.76054
Full Text: DOI

References:

[1] Morinishi, Y.; Lund, T. S.; Vasilyev, O. V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143, 90-124 (1998) · Zbl 0932.76054
[2] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043
[3] Vasilyev, O. V., High order finite difference schemes on non-uniform meshes with good conservation properties, J. Comput. Phys., 157, 746-761 (2000) · Zbl 0959.76063
[4] Morinishi, Y.; Vasilyev, O. V.; Ogi, T., Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations, J. Comput. Phys., 197, 686-710 (2004) · Zbl 1079.76602
[5] Verstappen, R. W.C. P.; Veldman, A. E.P., Symmetry-preserving discretization of turbulent flow, J. Comput. Phys., 187, 343-368 (2003) · Zbl 1062.76542
[6] Nicoud, F., Conservative high-order finite-difference schemes for low-Mach number flows, J. Comput. Phys., 158, 71-97 (2000) · Zbl 0973.76068
[7] Desjardins, O.; Blanquart, G.; Balarac, G.; Pitsch, H., High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys., 227, 7125-7159 (2008) · Zbl 1201.76139
[8] Kravchenko, A. G.; Moin, P., On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys., 131, 310-322 (1997) · Zbl 0872.76074
[9] Kennedy, C. A.; Gruber, A., Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid, J. Comput. Phys., 227, 1676-1700 (2008) · Zbl 1290.76135
[10] W.J. Feiereisen, W.C. Reynolds, J.H. Ferziger, Numerical Simulation of Compressible, Homogeneous Turbulent Shear Flow, Department Mechanical Engineering, Stanford University, Report No. TF-13, 1981.; W.J. Feiereisen, W.C. Reynolds, J.H. Ferziger, Numerical Simulation of Compressible, Homogeneous Turbulent Shear Flow, Department Mechanical Engineering, Stanford University, Report No. TF-13, 1981. · Zbl 0518.76050
[11] G.A. Blaisdell, N.N. Mansour, W.C. Reynolds, Numerical Simulations of Compressible Homogeneous Turbulence, Stanford University, Report No. TF-50, 1991.; G.A. Blaisdell, N.N. Mansour, W.C. Reynolds, Numerical Simulations of Compressible Homogeneous Turbulence, Stanford University, Report No. TF-50, 1991.
[12] Blaisdell, G. A.; Mansour, N. N.; Reynolds, W. C., Compressibility effects on the growth and structure of homogeneous turbulent shear flow, J. Fluid Mech., 256, 443-485 (1993) · Zbl 0800.76186
[13] Ducros, F.; Ferrand, V.; Nicoud, F.; Weber, C.; Darracq, D.; Gacherieu, C.; Poinsot, T., Large-eddy simulation of the shock/turbulence interaction, J. Comput. Phys., 152, 517-549 (1999) · Zbl 0955.76045
[14] Ducros, F.; Laporte, F.; Souléres, T.; Guinot, V.; Moinat, P.; Caruell, B., High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows, J. Comput. Phys., 161, 114-139 (2000) · Zbl 0972.76066
[15] Morinishi, Y.; Tamano, S.; Nakabayashi, K., A DNS algorithm using B-spline collocation method for compressible turbulent channel flow, Comput. Fluids, 32, 751-776 (2003) · Zbl 1083.76542
[16] Ham, F. E.; Lien, F. S.; Strong, A. B., A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids, J. Comput. Phys., 177, 117-133 (2002) · Zbl 1066.76044
[17] C.D. Pierce, Progress-variable Approach for Large-eddy Simulation of Turbulent Combustion, Ph.D. Thesis, Stanford University, Stanford, CA, 2001.; C.D. Pierce, Progress-variable Approach for Large-eddy Simulation of Turbulent Combustion, Ph.D. Thesis, Stanford University, Stanford, CA, 2001.
[18] Wall, C.; Pierce, C. D.; Moin, P., A semi-implicit method for resolution of acoustic waves in low Mach number flows, J. Comput. Phys., 181, 545-563 (2002) · Zbl 1178.76264
[19] Honein, A. E.; Moin, P., Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201, 531-545 (2004) · Zbl 1061.76044
[20] Y. Morinishi, Secondary conservative finite difference scheme of convection for compressible turbulent flow analysis, in: Proceedings of the 22nd SEIKEN TSFD Symposium, Tokyo, 2007, pp. 69-75 (in Japanese).; Y. Morinishi, Secondary conservative finite difference scheme of convection for compressible turbulent flow analysis, in: Proceedings of the 22nd SEIKEN TSFD Symposium, Tokyo, 2007, pp. 69-75 (in Japanese).
[21] Subbareddy, P. K.; Candler, G. V.; discrete, A. fully, kinetic energy consistent finite-volume scheme for compressible flows, J. Comput. Phys., 228, 1347-1364 (2009) · Zbl 1157.76029
[22] Roe, P., Approximated Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[23] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[24] Nagarajan, S.; Lele, S. K.; Ferziger, J. H., A robust high-order compact method for large eddy simulation, J. Comput. Phys., 191, 392-419 (2003) · Zbl 1051.76030
[25] Williamson, J. H., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 48-56 (1980) · Zbl 0425.65038
[26] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357-397 (2004) · Zbl 1036.65045
[27] Brown, P. N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Stat. Comput., 11, 450-481 (1990) · Zbl 0708.65049
[28] Saad, Y.; Schults, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[29] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Stat. Comput., 14, 461-469 (1993) · Zbl 0780.65022
[30] Samtaney, R.; Pullin, D. I.; Kosović, B., Direct numerical simulation of decaying compressible turbulence and shokclet statistics, Phys. Fluids, 13, 1415-1430 (2001) · Zbl 1184.76474
[31] Ghaddar, N. K.; Korczak, K. Z.; Mikic, B. B.; Patera, A. T., Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillations, J. Fluid Mech., 163, 99-127 (1986)
[32] Morinishi, Y., Forms of convection and quadratic conservative finite difference schemes for low-Mach number compressible flow simulations, Trans. JSME, 73, Series B, 451-458 (2007), (in Japanese)
[33] Vinokur, M., Conservation equations of gasdynamics in curvilinear coordinate systems, J. Comput. Phys., 14, 105-125 (1974) · Zbl 0277.76061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.