×

Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates. (English) Zbl 1316.76064

Summary: We discuss stabilization strategies for finite-difference approximations of the compressible Euler equations in generalized curvilinear coordinates that do not rely on explicit upwinding or filtering of the physical variables. Our approach rather relies on a skew-symmetric-like splitting of the convective derivatives, that guarantees preservation of kinetic energy in the semi-discrete, low-Mach-number limit. A locally conservative formulation allows efficient implementation and easy incorporation into existing compressible flow solvers. The validity of the approach is tested for benchmark flow cases, including the propagation of a cylindrical vortex, and the head-on collision of two vortex dipoles. The tests support high accuracy and superior stability over conventional central discretization of the convective derivatives. The potential use for DNS/LES of turbulent compressible flows in complex geometries is discussed.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76N99 Compressible fluids and gas dynamics
Full Text: DOI

References:

[1] Phillips, N. A., An example of nonlinear computational instability, (The Atmosphere and The Sea in Motion (1959), Rockefeller Institute Press and Oxford University Press), 501-504
[2] Lilly, D. K., On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems, J. Comput. Phys., 93, 11-26 (1965)
[3] Orlandi, P., Fluid Flow Phenomena: A Numerical Toolkit (2000), Kluwer: Kluwer Dordrecht
[4] Kravchenko, A. G.; Moin, P., On the effect of numerical errors in large Eddy simulations of turbulent flows, J. Comput. Phys., 131, 310-322 (1997) · Zbl 0872.76074
[5] Morinishi, Y.; Lund, T. S.; Vasiliev, O. V.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143, 90-124 (1998) · Zbl 0932.76054
[6] Desjardins, O.; Blanquart, G.; Balarac, G.; Pitsch, H., High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys., 227, 7125-7159 (2008) · Zbl 1201.76139
[7] S. Kang, H. Pitsch, A robust scheme for compressible flows with a minimum artificial stabilization, Annu. Res. Briefs, Center for Turbulence Research, Stanford University, 2009.; S. Kang, H. Pitsch, A robust scheme for compressible flows with a minimum artificial stabilization, Annu. Res. Briefs, Center for Turbulence Research, Stanford University, 2009.
[8] Morinishi, Y., Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows, J. Comput. Phys., 229, 276-300 (2010) · Zbl 1375.76113
[9] Trefethen, L. N., Group velocity in finite difference schemes, SIAM Review, 24, 113-136 (1982) · Zbl 0487.65055
[10] Colonius, T.; Lele, S. K., Computational aeroacoustics: progress on nonlinear problems of sound generation, Progr. Aero. Sci., 40, 345-416 (2004)
[11] Visbal, M. R.; Gaitonde, D. V., On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, J. Comput. Phys., 181, 155-185 (2002) · Zbl 1008.65062
[12] Marsden, O.; Bogey, C.; Bailly, C., Direct noise computation of the turbulent flow around a zero-incidence airfoil, AIAA J., 46, 4, 874-883 (2008)
[13] Jameson, A., Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes, J. Sci. Comput., 34, 188-208 (2008) · Zbl 1133.76031
[14] Subbareddy, P. K.; Candler, G. V., A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows, J. Comput. Phys., 228, 1347-1364 (2009) · Zbl 1157.76029
[15] Kok, J. C., A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids, J. Comput. Phys., 228, 6811-6832 (2009) · Zbl 1261.76020
[16] Franck, J. A.; Colonius, T., Compressible large-Eddy simulation of separation control on a wall-mounted hump, AIAA J., 48, 6, 1098-1107 (2010)
[17] Pirozzoli, S., Generalized conservative approximations of split convective derivative operators, J. Comput. Phys., 229, 7180-7190 (2010) · Zbl 1426.76485
[18] J. Larsson, S.K. Lele, P. Moin, Effect of numerical dissipation on the predicted spectra for compressible turbulence, Annu. Res. Briefs, Center for Turbulence Research, Stanford University, 2007.; J. Larsson, S.K. Lele, P. Moin, Effect of numerical dissipation on the predicted spectra for compressible turbulence, Annu. Res. Briefs, Center for Turbulence Research, Stanford University, 2007.
[19] Johnsen, E.; Larsson, J.; Bhagatwala, A. V.; Cabot, W. H.; Moin, P.; Olson, B. J.; Rawat, P. S.; Shankar, S. K.; Sjögreen, B.; Yee, H. C.; Zhong, X.; Lele, S. K., Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves, J. Comput. Phys., 229, 1213-1237 (2010) · Zbl 1329.76138
[20] Vinokur, M., Conservation equations of gasdynamics in curvilinear coordinate systems, J. Comput. Phys., 14, 105-125 (1974) · Zbl 0277.76061
[21] Tam, C. K.W.; Webb, J. C., Dispersion-relation-preserving finite difference scheme for computational acoustics, J. Comput. Phys., 107, 262-281 (1993) · Zbl 0790.76057
[22] W.J. Feiereisen, W.C. Reynolds, J.H. Ferziger, Numerical simulation of a compressible, homogeneous, turbulent shear flow, Report TF 13, Thermosci. Div., Mech. Eng., Stanford University, 1981.; W.J. Feiereisen, W.C. Reynolds, J.H. Ferziger, Numerical simulation of a compressible, homogeneous, turbulent shear flow, Report TF 13, Thermosci. Div., Mech. Eng., Stanford University, 1981. · Zbl 0518.76050
[23] Blaisdell, G. A.; Spyropoulos, E. T.; Qin, J. H., The effect of the formulation of non-linear terms on aliasing errors in spectral methods, Appl. Numer. Math., 21, 207-219 (1996) · Zbl 0858.76060
[24] Kennedy, C. A.; Gruber, A., Reduced aliasing formulations of the convective terms within the Navier-Stokes equations, J. Comput. Phys., 227, 1676-1700 (2008) · Zbl 1290.76135
[25] Strand, B., Summation by parts for finite difference approximations for d/dx, J. Comput. Phys., 110, 47-67 (1994) · Zbl 0792.65011
[26] Mansour, N. N.; Moin, P.; Reynolds, W. C.; Ferziger, J. H., Improved methods for large Eddy simulations of turbulence, (Launder, B. F.; Schmidt, F. W.; Whitelaw, H. H., Turbulent Shear Flows I (1979), Springer-Verlag), 386401 · Zbl 0455.76048
[27] Honein, A. E.; Moin, P., Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201, 531-545 (2004) · Zbl 1061.76044
[28] Kawai, S.; Lele, S. K., Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes, J. Comput. Phys., 227, 9498-9526 (2007) · Zbl 1359.76223
[29] Thornber, B.; Drikakis, D.; Williams, R.; Youngs, D., On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes, J. Comput. Phys., 227, 4853-4872 (2008) · Zbl 1142.65073
[30] Lamb, H., Hydrodynamics (1932), Cambridge University Press: Cambridge University Press Cambridge · JFM 26.0868.02
[31] Velasco Fuentes, O. U.; van Heijst, G. J.F., Collision of dipolar vortices on a \(β\) plane, Phys. Fluids, 7, 2735-2750 (1995) · Zbl 1027.76512
[32] Voropayev, S.; Afanasyev, Y., Two-dimensional vortex-dipole interactions in a stratified fluid, J. Fluid Mech., 236, 665-689 (1992)
[33] Batchelor, G. K., An Introduction to Fluid Dynamics (1967), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0152.44402
[34] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[35] Saffman, P. G., Vortex models of isotropic turbulence, Phyl. Trans. R. Soc. Lond. A, 355, 1949-1956 (1997) · Zbl 0917.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.