×

A low-dissipation convection scheme for the stable discretization of turbulent interfacial flow. (English) Zbl 1390.76511

Summary: This paper analyzes a low-dissipation discretization for the resolution of immiscible, incompressible multiphase flow by means of interface-capturing schemes. The discretization is built on a three-dimensional, unstructured finite-volume framework and aims at minimizing the differences in kinetic energy preservation with respect to the continuous governing equations. This property plays a fundamental role in the case of flows presenting significant levels of turbulence. At the same time, the hybrid form of the convective operator proposed in this work incorporates localized low-dispersion characteristics to limit the growth of spurious flow solutions. The low-dissipation discrete framework is presented in detail and, in order to expose the advantages with respect to commonly used methodologies, its conservation properties and accuracy are extensively studied, both theoretically and numerically. Numerical tests are performed by considering a three-dimensional vortex, an exact sinusoidal function, and a spherical drop subjected to surface tension forces in equilibrium and immersed in a swirling velocity field. Finally, the turbulent atomization of a liquid-gas jet is numerically analyzed to further assess the capabilities of the method.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76Txx Multiphase and multicomponent flows

Software:

Gerris; SURFER; PROST

References:

[1] Brennen, C. E., Fundamentals of multiphase flow, (2005), Cambridge University Press · Zbl 1127.76001
[2] Peskin, C. S., Numerical analysis of blood flow in the heart, J Comput Phys, 25, 3, 220-252, (1977) · Zbl 0403.76100
[3] Balcázar, N.; Jofre, L.; Lehmkuhl, O.; Castro, J.; Rigola, J., A finite-volume/level-set method for simulating two-phase flows on unstructured grids, Int J Multiphase Flow, 64, 55-72, (2014) · Zbl 1299.76158
[4] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu Rev Fluid Mech, 31, 1, 567-603, (1999)
[5] Gorokhovski, M.; Herrmann, M., Modeling primary atomization, Annu Rev Fluid Mech, 40, 343-366, (2008) · Zbl 1232.76058
[6] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 39, 1, 201-225, (1981) · Zbl 0462.76020
[7] Liovic, P.; Rudman, M.; Liow, J.-L.; Lakehal, D.; Kothe, D., A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction, Comput Fluids, 35, 10, 1011-1032, (2006) · Zbl 1177.76292
[8] Jofre, L.; Lehmkuhl, O.; Castro, J.; Oliva, A., A 3-d volume-of-fluid advection method based on cell-vertex velocities for unstructured meshes, Comput Fluids, 94, 14-29, (2014) · Zbl 1391.76554
[9] Jofre, L.; Borrell, R.; Lehmkuhl, O.; Oliva, A., Parallel load balancing strategy for volume-of-fluid methods on 3-D unstructured meshes, J Comput Phys, 282, 269-288, (2015) · Zbl 1351.76217
[10] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J Comput Phys, 79, 1, 12-49, (1988) · Zbl 0659.65132
[11] Olsson, E.; Kreiss, G., A conservative level set method for two phase flow, J Comput Phys, 210, 225-246, (2005) · Zbl 1154.76368
[12] Balcázar, N.; Lehmkuhl, O.; Jofre, L.; Rigola, J.; Oliva, A., A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes, Comput Fluids, 124, 12-29, (2016) · Zbl 1390.76048
[13] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, J Comput Phys, 113, 1, 134-147, (1994) · Zbl 0809.76064
[14] Renardy, Y.; Renardy, M., PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, J Comput Phys, 183, 2, 400-421, (2002) · Zbl 1057.76569
[15] Zahedi, S.; Kronbichler, M.; Kreiss, G., Spurious currents in finite element based level set methods for two-phase flow, Int J Numer Methods Fluids, 69, 9, 1433-1456, (2012) · Zbl 1253.76066
[16] Denner, F.; van Wachem, B. G., On the convolution of fluid properties and surface force for interface capturing methods, Int J Multiphase Flow, 54, 61-64, (2013)
[17] François, M. M.; Cummins, S. J.; Dendy, E. D.; Kothe, D. B.; Sicilian, J. M.; Williams, M. W., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J Comput Phys, 213, 1, 141-173, (2006) · Zbl 1137.76465
[18] Tong, A. Y.; Wang, Z., A numerical method for capillarity-dominant free surface flows, J Comput Phys, 221, 2, 506-523, (2007) · Zbl 1216.76055
[19] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J Comput Phys, 2, 12-26, (1967) · Zbl 0149.44802
[20] Di Mascio, A.; Broglia, R.; Muscari, R., On the application of the single-phase level set method to naval hydrodynamic flows, Comput Fluids, 36, 5, 868-886, (2007) · Zbl 1194.76201
[21] Lv, X.; Zou, Q.; Zhao, Y.; Reeve, D., A novel coupled level set and volume of fluid method for sharp interface capturing on 3D tetrahedral grids, J Comput Phys, 229, 7, 2573-2604, (2010) · Zbl 1423.76303
[22] Schillaci, E.; Jofre, L.; Balcázar, N.; Lehmkuhl, O.; Oliva, A., A level-set aided single-phase model for the numerical simulation of free-surface flows on unstructured meshes, Comput Fluids, 140, 97-110, (2016) · Zbl 1390.76512
[23] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J Comput Phys, 228, 16, 5838-5866, (2009) · Zbl 1280.76020
[24] Löhner, R.; Yang, C.; Onate, E., Simulation of flows with violent free surface motion and moving objects using unstructured grids, Int J Numer Methods Fluids, 53, 8, 1315-1338, (2007) · Zbl 1108.76056
[25] Fuster, D.; Bagué, A.; Boeck, T.; Le Moyne, L.; Leboissetier, A.; Popinet, S., Simulation of primary atomization with an octree adaptive mesh refinement and vof method, Int J Multiphase Flow, 35, 6, 550-565, (2009)
[26] Verstappen, R.; Veldman, A., Symmetry-preserving discretization of turbulent flow, J Comput Phys, 187, 1, 343-368, (2003) · Zbl 1062.76542
[27] Jofre, L.; Lehmkuhl, O.; Ventosa, J.; Trias, F. X.; Oliva, A., Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations, Numer Heat Transfer, Part B, 65, 1, 53-79, (2014)
[28] Trias, X.; Lehmkuhl, O.; Oliva, A.; Pérez-Segarra, C.; Verstappen, R., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J Comput Phys, 258, 246-267, (2014) · Zbl 1349.65386
[29] Fuster, D., An energy preserving formulation for the simulation of multiphase turbulent flows, J Comput Phys, 235, 114-128, (2013)
[30] Veldman, A. E.; Lam, K.-W., Symmetry-preserving upwind discretization of convection on non-uniform grids, Appl Numer Math, 58, 12, 1881-1891, (2008) · Zbl 1153.65086
[31] Pirozzoli, S., Numerical methods for high-speed flows, Annu Rev Fluid Mech, 43, 163-194, (2011) · Zbl 1299.76103
[32] Trias, F. X.; Gorobets, A.; Oliva, A., A simple approach to discretize the viscous term with spatially varying (eddy-) viscosity, J Comput Phys, 253, 405-417, (2013) · Zbl 1349.76400
[33] Jofre, L.; Lehmkuhl, O.; Balcázar, N.; Castro, J.; Rigola, J.; Oliva, A., Conservative discretization of multiphase flow with high density ratios, WIT Trans Eng Sci, 82, 153-164, (2014) · Zbl 1299.76159
[34] Morinishi, Y.; Lund, T.; Vasilyev, O.; Moin, P., Fully conservative higher order finite difference schemes for incompressible flow, J Comput Phys, 143, 1, 90-124, (1998) · Zbl 0932.76054
[35] Felten, F. N.; Lund, T. S., Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow, J Comput Phys, 215, 2, 465-484, (2006) · Zbl 1173.76382
[36] Fishpool, G.; Leschziner, M., Stability bounds for explicit fractional-step schemes for the Navier-Stokes equations at high Reynolds number, Comput Fluids, 38, 6, 1289-1298, (2009) · Zbl 1242.76202
[37] Termo Fluids S.L., Webpage: www.termofluids.com
[38] Brackbill, J.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 2, 335-354, (1992) · Zbl 0775.76110
[39] Balcázar, N.; Rigola, J.; Castro, J.; Oliva, A., A level-set model for thermocapillary motion of deformable fluid particles, Int J Heat Fluid Flow, 62, 324-343, (2016)
[40] Antepara, O.; Lehmkuhl, O.; Borrell, R.; Chiva, J.; Oliva, A., Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows, Comput Fluids, 110, 48-61, (2014) · Zbl 1390.76128
[41] Schillaci, E.; Antepara, O.; Lehmkuhl, O.; Balcázar, N.; Oliva, A., Effectiveness of adaptive mesh refinement strategies in the DNS of multiphase flows, Proceedings of international symposium turbulent heat and mass transfer VIII, (2015)
[42] Schillaci, E.; Lehmkuhl, O.; Antepara, O.; Oliva, A., Direct numerical simulation of multiphase flows with unstable interfaces, J Phys Conf Ser, 745, 032114, (2016)
[43] Lasheras, J.; Hopfinger, E., Liquid jet instability and atomization in a coaxial gas stream, Annu Rev Fluid Mech, 32, 1, 275-308, (2000) · Zbl 0953.76514
[44] Grosshans, H.; Movaghar, A.; Cao, L.; Oevermann, M.; Szász, R.-Z.; Fuchs, L., Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters, Comput Fluids, 136, 312-323, (2016) · Zbl 1390.76867
[45] Lomb, N. R., Least-squares frequency analysis of unequally spaced data, Astrophys Space Sci, 39, 2, 447-462, (1976)
[46] Kraichnan, R. H., Inertial ranges in two-dimensional turbulence, Phys Fluids, 10, 1417-1423, (1967)
[47] Verstappen, R.; Veldman, A., Direct numerical simulation of turbulence at lower costs, J Eng Math, 32, 2-3, 143-159, (1997) · Zbl 0911.76072
[48] Trias, F. X.; Lehmkuhl, O., A self-adaptive strategy for the time integration of Navier-Stokes equations, Numer Heat Transfer, Part B, 60, 2, 116-134, (2011)
[49] Gerschgorin, S., Über die abgrenzung der eigenwerte einer matrix, Fiziko-Matematicheskaya Nauka, 7, 749-754, (1931) · Zbl 0003.00102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.