×

A Mellin space approach to cosmological correlators. (English) Zbl 1434.81117

Summary: We propose a Mellin space approach to the evaluation of late-time momentum-space correlation functions of quantum fields in \((d + 1)\)-dimensional de Sitter space. The Mellin-Barnes representation makes manifest the analytic structure of late-time correlators and, more generally, provides a convenient general \(d\) framework for the study of conformal correlators in momentum space. In this work we focus on tree-level correlation functions of general scalars as a prototype, including \(n\)-point contact diagrams and 4-point exchanges. For generic scalars, both the contact and exchange diagrams are given by (generalised) Hypergeometric functions, which reduce to existing expressions available in the literature for \(d = 3\) and external scalars which are either simultaneously conformally coupled or massless. This approach can also be used for the perturbative bulk evaluation of momentum space boundary correlators in \((d + 1)\)-dimensional anti-de Sitter space (Witten diagrams).

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
62P35 Applications of statistics to physics
81U05 \(2\)-body potential quantum scattering theory
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] Guth, Ah, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev., D 23, 347 (1981) · Zbl 1371.83202
[2] Linde, Ad, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett., B 108, 389 (1982) · doi:10.1016/0370-2693(82)91219-9
[3] Albrecht, A.; Steinhardt, Pj, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett., 48, 1220 (1982) · doi:10.1103/PhysRevLett.48.1220
[4] Starobinsky, Aa, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett., B 117, 175 (1982) · doi:10.1016/0370-2693(82)90541-X
[5] Chen, X., Primordial non-Gaussianities from inflation models, Adv. Astron., 2010, 638979 (2010) · doi:10.1155/2010/638979
[6] Maldacena, Jm; Pimentel, Gl, On graviton non-Gaussianities during inflation, JHEP, 09, 045 (2011) · Zbl 1301.81147 · doi:10.1007/JHEP09(2011)045
[7] Mata, I.; Raju, S.; Trivedi, S., CMB from CFT, JHEP, 07, 015 (2013) · Zbl 1342.83403 · doi:10.1007/JHEP07(2013)015
[8] Anninos, D.; Anous, T.; Freedman, Dz; Konstantinidis, G., Late-time structure of the Bunch-Davies de Sitter wavefunction, JCAP, 11, 048 (2015) · doi:10.1088/1475-7516/2015/11/048
[9] Ghosh, A.; Kundu, N.; Raju, S.; Trivedi, Sp, Conformal invariance and the four point scalar correlator in slow-roll inflation, JHEP, 07, 011 (2014) · doi:10.1007/JHEP07(2014)011
[10] Kehagias, A.; Riotto, A., High energy physics signatures from inflation and conformal symmetry of de Sitter, Fortsch. Phys., 63, 531 (2015) · Zbl 1338.83216 · doi:10.1002/prop.201500025
[11] N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
[12] Lee, H.; Baumann, D.; Pimentel, Gl, Non-Gaussianity as a particle detector, JHEP, 12, 040 (2016) · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[13] N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological polytopes and the wavefunction of the universe, arXiv:1709.02813 [INSPIRE].
[14] P. Benincasa, From the flat-space S-matrix to the wavefunction of the universe, arXiv:1811.02515 [INSPIRE]. · Zbl 1254.81087
[15] Li, Sy; Wang, Y.; Zhou, S., KLT-like behaviour of inflationary graviton correlators, JCAP, 12, 023 (2018) · Zbl 1536.83187 · doi:10.1088/1475-7516/2018/12/023
[16] Farrow, Ja; Lipstein, Ae; Mcfadden, P., Double copy structure of CFT correlators, JHEP, 02, 130 (2019) · Zbl 1411.81176 · doi:10.1007/JHEP02(2019)130
[17] N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The cosmological bootstrap: inflationary correlators from symmetries and singularities, arXiv:1811.00024 [INSPIRE]. · Zbl 1436.85001
[18] Goon, G.; Hinterbichler, K.; Joyce, A.; Trodden, M., Shapes of gravity: tensor non-Gaussianity and massive spin-2 fields, JHEP, 10, 182 (2019) · Zbl 1427.83066 · doi:10.1007/JHEP10(2019)182
[19] C. Corianò, L. Delle Rose, E. Mottola and M. Serino, Solving the conformal constraints for scalar operators in momentum space and the evaluation of Feynman’s master integrals, JHEP07 (2013) 011 [arXiv:1304.6944] [INSPIRE]. · Zbl 1342.81138
[20] Bzowski, A.; Mcfadden, P.; Skenderis, K., Implications of conformal invariance in momentum space, JHEP, 03, 111 (2014) · Zbl 1406.81082 · doi:10.1007/JHEP03(2014)111
[21] Bzowski, A.; Mcfadden, P.; Skenderis, K., Scalar 3-point functions in CFT: renormalisation, β-functions and anomalies, JHEP, 03, 066 (2016) · doi:10.1007/JHEP03(2016)066
[22] Bzowski, A.; Mcfadden, P.; Skenderis, K., Renormalised 3-point functions of stress tensors and conserved currents in CFT, JHEP, 11, 153 (2018) · Zbl 1404.81219 · doi:10.1007/JHEP11(2018)153
[23] C. Corianò and M.M. Maglio, Renormalization, conformal Ward identities and the origin of a conformal anomaly pole, Phys. Lett.B 781 (2018) 283 [arXiv:1802.01501] [INSPIRE]. · Zbl 1398.81205
[24] C. Corianò and M.M. Maglio, Exact correlators from conformal Ward identities in momentum space and the perturbative TJJ vertex, Nucl. Phys.B 938 (2019) 440 [arXiv:1802.07675] [INSPIRE]. · Zbl 1407.81125
[25] Isono, H.; Noumi, T.; Shiu, G., Momentum space approach to crossing symmetric CFT correlators, JHEP, 07, 136 (2018) · Zbl 1395.81228 · doi:10.1007/JHEP07(2018)136
[26] Bzowski, A.; Mcfadden, P.; Skenderis, K., Renormalised CFT 3-point functions of scalars, currents and stress tensors, JHEP, 11, 159 (2018) · Zbl 1404.83115 · doi:10.1007/JHEP11(2018)159
[27] C. Corianò and M.M. Maglio, The general 3-graviton vertex (TTT) of conformal field theories in momentum space in d = 4, Nucl. Phys.B 937 (2018) 56 [arXiv:1808.10221] [INSPIRE]. · Zbl 1402.81199
[28] C. Corianò and M.M. Maglio, On some hypergeometric solutions of the conformal Ward identities of scalar 4-point functions in momentum space, JHEP09 (2019) 107 [arXiv:1903.05047] [INSPIRE]. · Zbl 1423.81156
[29] Isono, H.; Noumi, T.; Takeuchi, T., Momentum space conformal three-point functions of conserved currents and a general spinning operator, JHEP, 05, 057 (2019) · Zbl 1416.81157 · doi:10.1007/JHEP05(2019)057
[30] C. Sleight and M. Taronna, Bootstrapping inflationary correlators in Mellin space, arXiv:1907.01143 [INSPIRE]. · Zbl 1377.83008
[31] Liu, H., Scattering in anti-de Sitter space and operator product expansion, Phys. Rev., D 60, 106005 (1999)
[32] Mack, G., D-dimensional conformal field theories with anomalous dimensions as dual resonance models, Bulg. J. Phys., 36, 214 (2009) · Zbl 1202.81190
[33] G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
[34] Penedones, J., Writing CFT correlation functions as AdS scattering amplitudes, JHEP, 03, 025 (2011) · Zbl 1301.81154 · doi:10.1007/JHEP03(2011)025
[35] Paulos, Mf, Towards Feynman rules for Mellin amplitudes, JHEP, 10, 074 (2011) · Zbl 1303.81122 · doi:10.1007/JHEP10(2011)074
[36] Fitzpatrick, Al; Kaplan, J.; Penedones, J.; Raju, S.; Van Rees, Bc, A natural language for AdS/CFT correlators, JHEP, 11, 095 (2011) · Zbl 1306.81225 · doi:10.1007/JHEP11(2011)095
[37] Fitzpatrick, Al; Kaplan, J., Analyticity and the holographic S-matrix, JHEP, 10, 127 (2012) · Zbl 1397.81300 · doi:10.1007/JHEP10(2012)127
[38] Chalmers, G.; Schalm, K., The large N_climit of four point functions in N = 4 super Yang-Mills theory from anti-de Sitter supergravity, Nucl. Phys., B 554, 215 (1999) · Zbl 0958.81133 · doi:10.1016/S0550-3213(99)00275-8
[39] S. Raju, BCFW for Witten diagrams, Phys. Rev. Lett.106 (2011) 091601 [arXiv:1011.0780] [INSPIRE].
[40] Raju, S., New recursion relations and a flat space limit for AdS/CFT correlators, Phys. Rev., D 85, 126009 (2012)
[41] Albayrak, S.; Kharel, S., Towards the higher point holographic momentum space amplitudes, JHEP, 02, 040 (2019) · Zbl 1411.81166
[42] Albayrak, S.; Chowdhury, C.; Kharel, S., New relation for Witten diagrams, JHEP, 10, 274 (2019) · Zbl 1427.81110 · doi:10.1007/JHEP10(2019)274
[43] M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, in Unity from duality: gravity, gauge theory and strings. Proceedings, NATO Advanced Study Institute, Euro Summer School, 76^thsession, Les Houches, France, 30 July-31 August 2001, pg. 423 [hep-th/0110007] [INSPIRE].
[44] D. Baumann, Inflation, in Physics of the large and the small, TASI^t 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, CO, U.S.A., 1-26 June 2009, World Scientific, Singapore (2011), pg. 523 [arXiv:0907.5424] [INSPIRE].
[45] Anninos, D., De Sitter musings, Int. J. Mod. Phys., A 27, 1230013 (2012) · Zbl 1247.83068 · doi:10.1142/S0217751X1230013X
[46] Akhmedov, Et, Lecture notes on interacting quantum fields in de Sitter space, Int. J. Mod. Phys., D 23, 1430001 (2014) · Zbl 1284.81001 · doi:10.1142/S0218271814300018
[47] Chen, X.; Wang, Y.; Xianyu, Z-Z, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP, 12, 006 (2017) · Zbl 1515.83321 · doi:10.1088/1475-7516/2017/12/006
[48] Schwarz, F., Unitary irreducible representations of the groups SO_0(n, 1), J. Math. Phys., 12, 131 (1971) · Zbl 0209.33402 · doi:10.1063/1.1665471
[49] Dobrev, Vk; Mack, G.; Petkova, Vb; Petrova, Sg; Todorov, It, Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys., 63, 1 (1977) · Zbl 0407.43010 · doi:10.1007/BFb0009679
[50] Joung, Euihun; Mourad, Jihad; Parentani, Renaud, Group theoretical approach to quantum fields in de Sitter space, I. The principal series, Journal of High Energy Physics, 2006, 8, 082-082 (2006) · doi:10.1088/1126-6708/2006/08/082
[51] Joung, Euihun; Mourad, Jihad; Parentani, Renaud, Group theoretical approach to quantum fields in de Sitter space II. The complementary and discrete series, Journal of High Energy Physics, 2007, 9, 030-030 (2007) · doi:10.1088/1126-6708/2007/09/030
[52] Basile, T.; Bekaert, X.; Boulanger, N., Mixed-symmetry fields in de Sitter space: a group theoretical glance, JHEP, 05, 081 (2017) · Zbl 1380.81189 · doi:10.1007/JHEP05(2017)081
[53] Burges, Cjc, The de Sitter vacuum, Nucl. Phys., B 247, 533 (1984) · doi:10.1016/0550-3213(84)90562-5
[54] Mottola, E., Particle creation in de Sitter space, Phys. Rev., D 31, 754 (1985)
[55] Allen, B., Vacuum states in de Sitter space, Phys. Rev., D 32, 3136 (1985)
[56] Gibbons, Gw; Hawking, Sw, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev., D 15, 2738 (1977)
[57] R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that, Princeton Univ. Pr., Princeton, NJ, U.S.A. (1989) [INSPIRE]. · Zbl 0704.53058
[58] Bros, J.; Moschella, U.; Gazeau, J-P, Quantum field theory in the de Sitter universe, Phys. Rev. Lett., 73, 1746 (1994) · Zbl 1020.81736 · doi:10.1103/PhysRevLett.73.1746
[59] J. Bros and U. Moschella, Two point functions and quantum fields in de Sitter universe, Rev. Math. Phys.8 (1996) 327 [gr-qc/9511019] [INSPIRE]. · Zbl 0858.53054
[60] Schwinger, Js, Brownian motion of a quantum oscillator, J. Math. Phys., 2, 407 (1961) · Zbl 0098.43503 · doi:10.1063/1.1703727
[61] L. Kadanoff and G. Baym, Quantum statistical mechanics: Green’s function methods in equilibrium and nonequilibrium problems, Front. Phys., W.A. Benjamin, U.S.A. (1962). · Zbl 0115.22901
[62] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz.47 (1964) 1515 [Sov. Phys. JETP20 (1965) 1018] [INSPIRE].
[63] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[64] F. Bernardeau, T. Brunier and J.-P. Uzan, High order correlation functions for self interacting scalar field in de Sitter space, Phys. Rev.D 69 (2004) 063520 [astro-ph/0311422] [INSPIRE].
[65] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev.D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
[66] Hartman, T.; Rastelli, L., Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP, 01, 019 (2008) · doi:10.1088/1126-6708/2008/01/019
[67] S. Giombi and X. Yin, On higher spin gauge theory and the critical O(N) model, Phys. Rev.D 85 (2012) 086005 [arXiv:1105.4011] [INSPIRE].
[68] M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS propagators, JHEP09 (2014) 064 [arXiv:1404.5625] [INSPIRE]. · Zbl 1333.83138
[69] Bekaert, X.; Erdmenger, J.; Ponomarev, D.; Sleight, C., Towards holographic higher-spin interactions: four-point functions and higher-spin exchange, JHEP, 03, 170 (2015) · Zbl 1388.81768 · doi:10.1007/JHEP03(2015)170
[70] Bekaert, X.; Erdmenger, J.; Ponomarev, D.; Sleight, C., Quartic AdS interactions in higher-spin gravity from conformal field theory, JHEP, 11, 149 (2015) · Zbl 1388.83565 · doi:10.1007/JHEP11(2015)149
[71] Sleight, C., Interactions in higher-spin gravity: a holographic perspective, J. Phys., A 50, 383001 (2017) · Zbl 1378.81161
[72] Chen, H-Y; Kuo, E-J; Kyono, H., Anatomy of geodesic Witten diagrams, JHEP, 05, 070 (2017) · Zbl 1380.81303 · doi:10.1007/JHEP05(2017)070
[73] Sleight, C.; Taronna, M., Spinning Witten diagrams, JHEP, 06, 100 (2017) · Zbl 1380.81362 · doi:10.1007/JHEP06(2017)100
[74] K. Tamaoka, Geodesic Witten diagrams with antisymmetric tensor exchange, Phys. Rev.D 96 (2017) 086007 [arXiv:1707.07934] [INSPIRE]. · Zbl 1477.83037
[75] Giombi, S.; Sleight, C.; Taronna, M., Spinning AdS loop diagrams: two point functions, JHEP, 06, 030 (2018) · Zbl 1395.81219 · doi:10.1007/JHEP06(2018)030
[76] E.Y. Yuan, Loops in the bulk, arXiv:1710.01361 [INSPIRE].
[77] Giombi, S.; Kirilin, V.; Perlmutter, E., Double-trace deformations of conformal correlations, JHEP, 02, 175 (2018) · Zbl 1387.81315 · doi:10.1007/JHEP02(2018)175
[78] E.Y. Yuan, Simplicity in AdS perturbative dynamics, arXiv:1801.07283 [INSPIRE].
[79] Nishida, M.; Tamaoka, K., Fermions in geodesic Witten diagrams, JHEP, 07, 149 (2018) · Zbl 1395.81243 · doi:10.1007/JHEP07(2018)149
[80] Costa, Ms; Hansen, T., AdS weight shifting operators, JHEP, 09, 040 (2018) · Zbl 1398.81207 · doi:10.1007/JHEP09(2018)040
[81] Carmi, D.; Di Pietro, L.; Komatsu, S., A study of quantum field theories in AdS at finite coupling, JHEP, 01, 200 (2019) · Zbl 1409.81113 · doi:10.1007/JHEP01(2019)200
[82] Jepsen, Cb; Parikh, S., Propagator identities, holographic conformal blocks and higher-point AdS diagrams, JHEP, 10, 268 (2019) · Zbl 1427.81136 · doi:10.1007/JHEP10(2019)268
[83] Polyakov, Am, De Sitter space and eternity, Nucl. Phys., B 797, 199 (2008) · Zbl 1234.83010 · doi:10.1016/j.nuclphysb.2008.01.002
[84] Leonhardt, Thorsten; Manvelyan, Ruben; Rühl, Werner, The group approach to AdS space propagators, Nuclear Physics B, 667, 3, 413-434 (2003) · Zbl 1059.81134 · doi:10.1016/j.nuclphysb.2003.07.007
[85] Moschella, U.; Schaeffer, R., Quantum theory on Lobatchevski spaces, Class. Quant. Grav., 24, 3571 (2007) · Zbl 1206.83079 · doi:10.1088/0264-9381/24/14/003
[86] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[87] J. Penedones, High energy scattering in the AdS/CFT correspondence, Ph.D. thesis, Porto U., Porto, Portugal (2007) [arXiv:0712.0802] [INSPIRE].
[88] Bros, J.; Moschella, U.; Gazeau, Jp, Quantum field theory in the de Sitter universe, Phys. Rev. Lett., 73, 1746 (1994) · Zbl 1020.81736 · doi:10.1103/PhysRevLett.73.1746
[89] Gubser, Ss; Klebanov, Ir; Polyakov, Am, Gauge theory correlators from noncritical string theory, Phys. Lett., B 428, 105 (1998) · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[90] R. Paris and D. Kaminski, Asymptotics and Mellin-Barnes integrals, Encyclopedia of Mathematics and its Applications 85, Cambridge University Press, Cambridge, U.K. (2001). · Zbl 0983.41019
[91] Watson, G., A treatise on the theory of Bessel functions (1944), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K. · Zbl 0063.08184
[92] Bzowski, A.; Mcfadden, P.; Skenderis, K., Evaluation of conformal integrals, JHEP, 02, 068 (2016) · Zbl 1388.81643 · doi:10.1007/JHEP02(2016)068
[93] P. Appell, Sur les séries hypergéometriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles (in French), Comptes Rendus90 (1880) 296. · JFM 12.0296.01
[94] P. Appell and J. Kampé de Fériet, Fonctions hypergeómétriques et hypersphériques: polynomes d’hermite (in French), Gauthier-Villars, France (1926). · JFM 52.0361.13
[95] Davydychev, Ai, Recursive algorithm of evaluating vertex type Feynman integrals, J. Phys., A 25, 5587 (1992) · Zbl 0767.65005
[96] Antoniadis, I.; Mazur, Po; Mottola, E., Conformal invariance, dark energy and CMB non-Gaussianity, JCAP, 09, 024 (2012) · doi:10.1088/1475-7516/2012/09/024
[97] P. Creminelli, Conformal invariance of scalar perturbations in inflation, Phys. Rev.D 85 (2012) 041302 [arXiv:1108.0874] [INSPIRE].
[98] Boyanovsky, D.; Holman, R., On the perturbative stability of quantum field theories in de Sitter space, JHEP, 05, 047 (2011) · Zbl 1296.81157 · doi:10.1007/JHEP05(2011)047
[99] Falk, Toby; Rangarajan, Raghavan; Srednicki, Mark, The angular dependence of the three-point correlation function of the cosmic microwave background radiation as predicted by inflationary cosmologies, The Astrophysical Journal, 403, L1 (1993) · doi:10.1086/186707
[100] M. Zaldarriaga, Non-Gaussianities in models with a varying inflaton decay rate, Phys. Rev.D 69 (2004) 043508 [astro-ph/0306006] [INSPIRE].
[101] Seery, D.; Malik, Ka; Lyth, Dh, Non-Gaussianity of inflationary field perturbations from the field equation, JCAP, 03, 014 (2008) · doi:10.1088/1475-7516/2008/03/014
[102] Chen, X.; Huang, M-X; Kachru, S.; Shiu, G., Observational signatures and non-Gaussianities of general single field inflation, JCAP, 01, 002 (2007) · doi:10.1088/1475-7516/2007/01/002
[103] Holman, R.; Tolley, Aj, Enhanced non-Gaussianity from excited initial states, JCAP, 05, 001 (2008)
[104] Lopez Nacir, D.; Porto, Ra; Senatore, L.; Zaldarriaga, M., Dissipative effects in the effective field theory of inflation, JHEP, 01, 075 (2012) · Zbl 1306.81425 · doi:10.1007/JHEP01(2012)075
[105] R. Flauger, D. Green and R.A. Porto, On squeezed limits in single-field inflation. Part I, JCAP08 (2013) 032 [arXiv:1303.1430] [INSPIRE].
[106] Aravind, A.; Lorshbough, D.; Paban, S., Non-Gaussianity from excited initial inflationary states, JHEP, 07, 076 (2013) · Zbl 1342.83513 · doi:10.1007/JHEP07(2013)076
[107] Raju, S., Four point functions of the stress tensor and conserved currents in AdS_4/CFT_3, Phys. Rev., D 85, 126008 (2012)
[108] C.S. Meijer, Multiplikationstheoreme für die Funktion Gmnpq(z) (in German), Noord-Hollandsche Uitgevers Maatschappij, (1941). · JFM 67.1016.01
[109] Sleight, C.; Taronna, M., Higher spin interactions from conformal field theory: the complete cubic couplings, Phys. Rev. Lett., 116, 181602 (2016) · doi:10.1103/PhysRevLett.116.181602
[110] C. Sleight, Metric-like methods in higher spin holography, PoS(Modave2016)003 (2017) [arXiv:1701.08360] [INSPIRE]. · Zbl 1378.81161
[111] A. Castro, E. Llabrés and F. Rejon-Barrera, Geodesic diagrams, gravitational interactions & OPE structures, JHEP06 (2017) 099 [arXiv:1702.06128] [INSPIRE]. · Zbl 1380.81301
[112] Chu, Sk; Wang, Y.; Zhou, S., Operator method and recursion relations for inflationary correlators, JCAP, 03, 042 (2019) · Zbl 1541.83128 · doi:10.1088/1475-7516/2019/03/042
[113] Noumi, T.; Yamaguchi, M.; Yokoyama, D., Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP, 06, 051 (2013) · Zbl 1342.83110 · doi:10.1007/JHEP06(2013)051
[114] E.W. Barnes, A new development of the theory of the hypergeometric functions, Proc. London Math. Soc.s2-6 (1908) 141. · JFM 39.0506.01
[115] Barnes, Ew, A transformation of generalised hypergeometric series, Quart. J., 41, 136 (1910) · JFM 41.0503.01
[116] Bailey, Wn, Generalized hypergeometric series (1935), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K. · Zbl 0011.02303
[117] Gelfand, I., General theory of hypergeometric functions, Sov. Math. Dokl., 33, 573 (1986) · Zbl 0645.33010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.