×

Double copy structure of CFT correlators. (English) Zbl 1411.81176

Summary: We consider the momentum-space 3-point correlators of currents, stress tensors and marginal scalar operators in general odd-dimensional conformal field theories. We show that the flat space limit of these correlators is spanned by gauge and gravitational scattering amplitudes in one higher dimension which are related by a double copy. Moreover, we recast three-dimensional CFT correlators in terms of tree-level Feynman diagrams without energy conservation, suggesting double copy structure beyond the flat space limit.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
62P35 Applications of statistics to physics
81U20 \(S\)-matrix theory, etc. in quantum theory
81T18 Feynman diagrams

References:

[1] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP03 (2011) 025 [arXiv:1011.1485] [INSPIRE]. · Zbl 1301.81154 · doi:10.1007/JHEP03(2011)025
[2] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE]. · doi:10.1103/PhysRevLett.94.181602
[3] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[4] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[5] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE]. · doi:10.1016/0003-4916(73)90446-6
[6] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys.B 49 (1972) 77 [Erratum ibid.B 53 (1973) 643] [INSPIRE].
[7] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [Sov. Phys. JETP39 (1974) 9] [INSPIRE].
[8] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[9] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys.B 269 (1986) 1 [INSPIRE]. · doi:10.1016/0550-3213(86)90362-7
[10] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[11] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE]. · doi:10.1103/PhysRevLett.105.061602
[12] F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett.113 (2014) 171601 [arXiv:1307.2199] [INSPIRE]. · doi:10.1103/PhysRevLett.113.171601
[13] L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP07 (2014) 048 [arXiv:1311.2564] [INSPIRE]. · doi:10.1007/JHEP07(2014)048
[14] F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE]. · Zbl 1388.83196 · doi:10.1007/JHEP07(2015)149
[15] J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP09 (2011) 045 [arXiv:1104.2846] [INSPIRE]. · Zbl 1301.81147 · doi:10.1007/JHEP09(2011)045
[16] S. Raju, New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, Phys. Rev.D 85 (2012) 126009 [arXiv:1201.6449] [INSPIRE].
[17] G. Mack, D-dimensional Conformal Field Theories with anomalous dimensions as Dual Resonance Models, Bulg. J. Phys.36 (2009) 214 [arXiv:0909.1024] [INSPIRE]. · Zbl 1202.81190
[18] G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
[19] A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP11 (2011) 095 [arXiv:1107.1499] [INSPIRE]. · Zbl 1306.81225 · doi:10.1007/JHEP11(2011)095
[20] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[21] P. McFadden and K. Skenderis, Holographic Non-Gaussianity, JCAP05 (2011) 013 [arXiv:1011.0452] [INSPIRE]. · doi:10.1088/1475-7516/2011/05/013
[22] P. McFadden and K. Skenderis, Cosmological 3-point correlators from holography, JCAP06 (2011) 030 [arXiv:1104.3894] [INSPIRE]. · doi:10.1088/1475-7516/2011/06/030
[23] K. Schalm, G. Shiu and T. van der Aalst, Consistency condition for inflation from (broken) conformal symmetry, JCAP03 (2013) 005 [arXiv:1211.2157] [INSPIRE]. · doi:10.1088/1475-7516/2013/03/005
[24] A. Bzowski, P. McFadden and K. Skenderis, Holography for inflation using conformal perturbation theory, JHEP04 (2013) 047 [arXiv:1211.4550] [INSPIRE]. · Zbl 1342.83098 · doi:10.1007/JHEP04(2013)047
[25] I. Mata, S. Raju and S. Trivedi, CMB from CFT, JHEP07 (2013) 015 [arXiv:1211.5482] [INSPIRE]. · Zbl 1342.83403 · doi:10.1007/JHEP07(2013)015
[26] D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time Structure of the Bunch-Davies de Sitter Wavefunction, JCAP11 (2015) 048 [arXiv:1406.5490] [INSPIRE]. · doi:10.1088/1475-7516/2015/11/048
[27] H. Isono, T. Noumi, G. Shiu, S.S.C. Wong and S. Zhou, Holographic non-Gaussianities in general single-field inflation, JHEP12 (2016) 028 [arXiv:1610.01258] [INSPIRE]. · Zbl 1390.83459 · doi:10.1007/JHEP12(2016)028
[28] A. Ghosh, N. Kundu, S. Raju and S.P. Trivedi, Conformal Invariance and the Four Point Scalar Correlator in Slow-Roll Inflation, JHEP07 (2014) 011 [arXiv:1401.1426] [INSPIRE]. · doi:10.1007/JHEP07(2014)011
[29] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
[30] N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, arXiv:1811.00024 [INSPIRE]. · Zbl 1436.85001
[31] N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological Polytopes and the Wavefunction of the Universe, arXiv:1709.02813 [INSPIRE].
[32] N. Arkani-Hamed and P. Benincasa, On the Emergence of Lorentz Invariance and Unitarity from the Scattering Facet of Cosmological Polytopes, arXiv:1811.01125 [INSPIRE].
[33] P. Benincasa, From the flat-space S-matrix to the Wavefunction of the Universe, arXiv:1811.02515 [INSPIRE]. · Zbl 1254.81087
[34] S.Y. Li, Y. Wang and S. Zhou, KLT-Like Behaviour of Inflationary Graviton Correlators, JCAP12 (2018) 023 [arXiv:1806.06242] [INSPIRE]. · Zbl 1536.83187 · doi:10.1088/1475-7516/2018/12/023
[35] S. Raju, Recursion Relations for AdS/CFT Correlators, Phys. Rev.D 83 (2011) 126002 [arXiv:1102.4724] [INSPIRE].
[36] S. Raju, BCFW for Witten Diagrams, Phys. Rev. Lett.106 (2011) 091601 [arXiv:1011.0780] [INSPIRE]. · doi:10.1103/PhysRevLett.106.091601
[37] S. Raju, Four Point Functions of the Stress Tensor and Conserved Currents in AdS4/CFT3, Phys. Rev.D 85 (2012) 126008 [arXiv:1201.6452] [INSPIRE].
[38] S. Albayrak and S. Kharel, Towards the higher point holographic momentum space amplitudes, JHEP02 (2019) 040 [arXiv:1810.12459] [INSPIRE]. · Zbl 1411.81166 · doi:10.1007/JHEP02(2019)040
[39] A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP03 (2014) 111 [arXiv:1304.7760] [INSPIRE]. · Zbl 1406.81082 · doi:10.1007/JHEP03(2014)111
[40] A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT: renormalisation, β-functions and anomalies, JHEP03 (2016) 066 [arXiv:1510.08442] [INSPIRE]. · doi:10.1007/JHEP03(2016)066
[41] A. Bzowski, P. McFadden and K. Skenderis, Evaluation of conformal integrals, JHEP02 (2016) 068 [arXiv:1511.02357] [INSPIRE]. · Zbl 1388.81643 · doi:10.1007/JHEP02(2016)068
[42] A. Bzowski, P. McFadden and K. Skenderis, Renormalised 3-point functions of stress tensors and conserved currents in CFT, JHEP11 (2018) 153 [arXiv:1711.09105] [INSPIRE]. · Zbl 1404.81219 · doi:10.1007/JHEP11(2018)153
[43] A. Bzowski, P. McFadden and K. Skenderis, Renormalised CFT 3-point functions of scalars, currents and stress tensors, JHEP11 (2018) 159 [arXiv:1805.12100] [INSPIRE]. · Zbl 1404.83115 · doi:10.1007/JHEP11(2018)159
[44] H. Johansson, G. Mogull and F. Teng, Unraveling conformal gravity amplitudes, JHEP09 (2018) 080 [arXiv:1806.05124] [INSPIRE]. · Zbl 1398.83080 · doi:10.1007/JHEP09(2018)080
[45] J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP10 (2012) 091 [arXiv:1208.0876] [INSPIRE]. · doi:10.1007/JHEP10(2012)091
[46] H. Johansson and J. Nohle, Conformal Gravity from Gauge Theory, arXiv:1707.02965 [INSPIRE].
[47] B. Nagaraj and D. Ponomarev, Spinor-Helicity Formalism for Massless Fields in AdS4, arXiv:1811.08438 [INSPIRE]. · Zbl 1453.81054
[48] E. Skvortsov, Light-Front Bootstrap for Chern-Simons Matter Theories, arXiv:1811.12333 [INSPIRE].
[49] S. He and Y. Zhang, New Formulas for Amplitudes from Higher-Dimensional Operators, JHEP02 (2017) 019 [arXiv:1608.08448] [INSPIRE]. · Zbl 1377.81222 · doi:10.1007/JHEP02(2017)019
[50] T. Azevedo and O.T. Engelund, Ambitwistor formulations of R2gravity and (DF)2gauge theories, JHEP11 (2017) 052 [arXiv:1707.02192] [INSPIRE]. · Zbl 1383.83085 · doi:10.1007/JHEP11(2017)052
[51] T. Azevedo, M. Chiodaroli, H. Johansson and O. Schlotterer, Heterotic and bosonic string amplitudes via field theory, JHEP10 (2018) 012 [arXiv:1803.05452] [INSPIRE]. · Zbl 1402.83092 · doi:10.1007/JHEP10(2018)012
[52] N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP08 (2004) 009 [hep-th/0406051] [INSPIRE]. · doi:10.1088/1126-6708/2004/08/009
[53] L. Dolan and J.N. Ihry, Conformal Supergravity Tree Amplitudes from Open Twistor String Theory, Nucl. Phys.B 819 (2009) 375 [arXiv:0811.1341] [INSPIRE]. · Zbl 1194.83096 · doi:10.1016/j.nuclphysb.2009.04.003
[54] T. Adamo and L. Mason, Twistor-strings and gravity tree amplitudes, Class. Quant. Grav.30 (2013) 075020 [arXiv:1207.3602] [INSPIRE]. · Zbl 1266.83165 · doi:10.1088/0264-9381/30/7/075020
[55] J.A. Farrow and A.E. Lipstein, New Worldsheet Formulae for Conformal Supergravity Amplitudes, JHEP07 (2018) 074 [arXiv:1805.04504] [INSPIRE]. · Zbl 1395.83123 · doi:10.1007/JHEP07(2018)074
[56] G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys.B 153 (1979) 365 [INSPIRE].
[57] A.I. Davydychev and J.B. Tausk, A Magic connection between massive and massless diagrams, Phys. Rev.D 53 (1996) 7381 [hep-ph/9504431] [INSPIRE].
[58] F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP11 (2012) 114 [arXiv:1209.2722] [INSPIRE]. · Zbl 1397.81071 · doi:10.1007/JHEP11(2012)114
[59] J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP01 (2017) 013 [arXiv:1509.03612] [INSPIRE]. · Zbl 1373.81335 · doi:10.1007/JHEP01(2017)013
[60] H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys.231 (1994) 311 [hep-th/9307010] [INSPIRE]. · Zbl 0795.53073 · doi:10.1006/aphy.1994.1045
[61] T. Bargheer, S. He and T. McLoughlin, New Relations for Three-Dimensional Supersymmetric Scattering Amplitudes, Phys. Rev. Lett.108 (2012) 231601 [arXiv:1203.0562] [INSPIRE]. · doi:10.1103/PhysRevLett.108.231601
[62] Y.-t. Huang and H. Johansson, Equivalent D = 3 Supergravity Amplitudes from Double Copies of Three-Algebra and Two-Algebra Gauge Theories, Phys. Rev. Lett.110 (2013) 171601 [arXiv:1210.2255] [INSPIRE]. · doi:10.1103/PhysRevLett.110.171601
[63] T. Adamo, E. Casali, L. Mason and S. Nekovar, Amplitudes on plane waves from ambitwistor strings, JHEP11 (2017) 160 [arXiv:1708.09249] [INSPIRE]. · Zbl 1383.83143 · doi:10.1007/JHEP11(2017)160
[64] R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP12 (2014) 056 [arXiv:1410.0239] [INSPIRE]. · Zbl 1333.83048 · doi:10.1007/JHEP12(2014)056
[65] M. Carrillo-González, R. Penco and M. Trodden, The classical double copy in maximally symmetric spacetimes, JHEP04 (2018) 028 [arXiv:1711.01296] [INSPIRE]. · Zbl 1390.81624 · doi:10.1007/JHEP04(2018)028
[66] T. Adamo, E. Casali and D. Skinner, A Worldsheet Theory for Supergravity, JHEP02 (2015) 116 [arXiv:1409.5656] [INSPIRE]. · Zbl 1388.83708 · doi:10.1007/JHEP02(2015)116
[67] N. Arkani-Hamed, Y.-T. Huang and S.-H. Shao, On the Positive Geometry of Conformal Field Theory, arXiv:1812.07739 [INSPIRE]. · Zbl 1416.81133
[68] M. Spradlin and A. Volovich, From Twistor String Theory To Recursion Relations, Phys. Rev.D 80 (2009) 085022 [arXiv:0909.0229] [INSPIRE].
[69] L. Dolan and P. Goddard, Gluon Tree Amplitudes in Open Twistor String Theory, JHEP12 (2009) 032 [arXiv:0909.0499] [INSPIRE]. · doi:10.1088/1126-6708/2009/12/032
[70] D. Nandan, A. Volovich and C. Wen, A Grassmannian Etude in NMHV Minors, JHEP07 (2010) 061 [arXiv:0912.3705] [INSPIRE]. · Zbl 1290.81075 · doi:10.1007/JHEP07(2010)061
[71] N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of Residues and Grassmannian Dualities, JHEP01 (2011) 049 [arXiv:0912.4912] [INSPIRE]. · Zbl 1214.81267 · doi:10.1007/JHEP01(2011)049
[72] N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP10 (2014) 030 [arXiv:1312.2007] [INSPIRE]. · Zbl 1388.81166 · doi:10.1007/JHEP10(2014)030
[73] J.A. Farrow and A.E. Lipstein, From 4d Ambitwistor Strings to On Shell Diagrams and Back, JHEP07 (2017) 114 [arXiv:1705.07087] [INSPIRE]. · Zbl 1380.81398 · doi:10.1007/JHEP07(2017)114
[74] N. Arkani-Hamed, Y. Bai, S. He and G. Yan, Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet, JHEP05 (2018) 096 [arXiv:1711.09102] [INSPIRE]. · Zbl 1391.81200 · doi:10.1007/JHEP05(2018)096
[75] A.E. Lipstein and L. Mason, Amplitudes of 3d Yang-Mills Theory, JHEP01 (2013) 009 [arXiv:1207.6176] [INSPIRE]. · Zbl 1342.81304 · doi:10.1007/JHEP01(2013)009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.