×

On some hypergeometric solutions of the conformal Ward identities of scalar 4-point functions in momentum space. (English) Zbl 1423.81156

Summary: We discuss specific hypergeometric solutions of the conformal Ward identities (CWI’s) of scalar 4-point functions of primary fields in momentum space, in \(d\) spacetime dimensions. We determine such solutions using various dual conformal ansätze (DCA’s). We start from a generic dual conformal correlator, and require it to be conformally covariant in coordinate space. The two requirements constrain such solutions to take a unique hypergeometric form. They describe correlators which are at the same time conformal and dual conformal in any dimension. These specific ansätze also show the existence of a link between 3- and 4-point functions of a CFT for such class of exact solutions, similarly to what found for planar ladder diagrams. We show that in \(d = 4\) only the box diagram and its melonic variants, in free field theory, satisfies such conditions, the remaining solutions being nonperturbative. We then turn to the analysis of some approximate high energy fixed angle solutions of the CWI’s which also in this case take the form of generalized hypergeometric functions. We show that they describe the behaviour of the 4-point functions at large energy and momentum transfers, with a fixed \(- t/s \). The equations, in this case, are solved by linear combinations of Lauricella functions of 3 variables and can be rewritten as generalized 4K integrals. In both cases the CWI’s alone are sufficient to identify such solutions and their special connection with generalized hypergeometric systems of equations.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81U05 \(2\)-body potential quantum scattering theory

References:

[1] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE]. · Zbl 1097.81734
[2] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[3] C. Corianò and M.M. Maglio, The general 3-graviton vertex (T T T ) of conformal field theories in momentum space in d = 4, Nucl. Phys.B 937 (2018) 56 [arXiv:1808.10221] [INSPIRE]. · Zbl 1402.81199
[4] C. Corianò and M.M. Maglio, Renormalization, Conformal Ward Identities and the Origin of a Conformal Anomaly Pole, Phys. Lett.B 781 (2018) 283 [arXiv:1802.01501] [INSPIRE]. · Zbl 1398.81205
[5] C. Corianò and M.M. Maglio, Exact Correlators from Conformal Ward Identities in Momentum Space and the Perturbative T J J Vertex, Nucl. Phys.B 938 (2019) 440 [arXiv:1802.07675] [INSPIRE]. · Zbl 1407.81125
[6] A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP03 (2014) 111 [arXiv:1304.7760] [INSPIRE]. · Zbl 1406.81082 · doi:10.1007/JHEP03(2014)111
[7] A. Bzowski, P. McFadden and K. Skenderis, Renormalised CFT 3-point functions of scalars, currents and stress tensors, JHEP11 (2018) 159 [arXiv:1805.12100] [INSPIRE]. · Zbl 1404.83115 · doi:10.1007/JHEP11(2018)159
[8] A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT: renormalisation, β-functions and anomalies, JHEP03 (2016) 066 [arXiv:1510.08442] [INSPIRE]. · Zbl 1404.81219
[9] A. Bzowski, P. McFadden and K. Skenderis, Renormalised 3-point functions of stress tensors and conserved currents in CFT, JHEP11 (2018) 153 [arXiv:1711.09105] [INSPIRE]. · Zbl 1404.81219 · doi:10.1007/JHEP11(2018)153
[10] C. Corianò, L. Delle Rose, E. Mottola and M. Serino, Solving the Conformal Constraints for Scalar Operators in Momentum Space and the Evaluation of Feynman’s Master Integrals, JHEP07 (2013) 011 [arXiv:1304.6944] [INSPIRE]. · Zbl 1342.81138
[11] A. Bzowski, P. McFadden and K. Skenderis, Evaluation of conformal integrals, JHEP02 (2016) 068 [arXiv:1511.02357] [INSPIRE]. · Zbl 1388.81643 · doi:10.1007/JHEP02(2016)068
[12] M. Giannotti and E. Mottola, The Trace Anomaly and Massless Scalar Degrees of Freedom in Gravity, Phys. Rev.D 79 (2009) 045014 [arXiv:0812.0351] [INSPIRE].
[13] R. Armillis, C. Corianò and L. Delle Rose, Conformal Anomalies and the Gravitational Effective Action: The T J J Correlator for a Dirac Fermion, Phys. Rev.D 81 (2010) 085001 [arXiv:0910.3381] [INSPIRE].
[14] R. Armillis, C. Corianò and L. Delle Rose, Trace Anomaly, Massless Scalars and the Gravitational Coupling of QCD, Phys. Rev.D 82 (2010) 064023 [arXiv:1005.4173] [INSPIRE]. · Zbl 1247.81300
[15] J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP09 (2011) 045 [arXiv:1104.2846] [INSPIRE]. · Zbl 1301.81147 · doi:10.1007/JHEP09(2011)045
[16] A. Bzowski, P. McFadden and K. Skenderis, Holographic predictions for cosmological 3-point functions, JHEP03 (2012) 091 [arXiv:1112.1967] [INSPIRE]. · Zbl 1309.81146 · doi:10.1007/JHEP03(2012)091
[17] C. Corianò, L. Delle Rose and M. Serino, Three and Four Point Functions of Stress Energy Tensors in D = 3 for the Analysis of Cosmological Non-Gaussianities, JHEP12 (2012) 090 [arXiv:1210.0136] [INSPIRE]. · Zbl 1397.83085
[18] M.N. Chernodub, A. Cortijo and M.A.H. Vozmediano, Generation of a Nernst Current from the Conformal Anomaly in Dirac and Weyl Semimetals, Phys. Rev. Lett.120 (2018) 206601 [arXiv:1712.05386] [INSPIRE].
[19] N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, arXiv:1811.00024 [INSPIRE]. · Zbl 1436.85001
[20] P. Benincasa, From the flat-space S-matrix to the Wavefunction of the Universe, arXiv:1811.02515 [INSPIRE]. · Zbl 1254.81087
[21] N. Arkani-Hamed and P. Benincasa, On the Emergence of Lorentz Invariance and Unitarity from the Scattering Facet of Cosmological Polytopes, arXiv:1811.01125 [INSPIRE].
[22] N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological Polytopes and the Wavefunction of the Universe, arXiv:1709.02813 [INSPIRE].
[23] J.M. Henn and J.C. Plefka, Scattering Amplitudes in Gauge Theories, Lect. Notes Phys.883 (2014) 1 [INSPIRE]. · Zbl 1315.81005 · doi:10.1007/978-3-642-54022-6_1
[24] P. Benincasa, New structures in scattering amplitudes: a review, Int. J. Mod. Phys.A 29 (2014) 1430005 [arXiv:1312.5583] [INSPIRE]. · Zbl 1284.81002
[25] A.I. Davydychev, Recursive algorithm of evaluating vertex type Feynman integrals, J. Phys.A 25 (1992) 5587 [INSPIRE]. · Zbl 0767.65005
[26] N.I. Usyukina and A.I. Davydychev, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett.B 298 (1993) 363 [INSPIRE].
[27] N.I. Usyukina and A.I. Davydychev, Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Phys. Lett.B 305 (1993) 136 [INSPIRE].
[28] D.J. Broadhurst and A.L. Kataev, Connections between deep inelastic and annihilation processes at next to next-to-leading order and beyond, Phys. Lett.B 315 (1993) 179 [hep-ph/9308274] [INSPIRE].
[29] J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE]. · doi:10.1088/1126-6708/2007/01/064
[30] J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys.B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE]. · Zbl 1219.81227
[31] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE]. · Zbl 1203.81112
[32] B. Eden, P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Four point functions in N = 4 supersymmetric Yang-Mills theory at two loops, Nucl. Phys.B 557 (1999) 355 [hep-th/9811172] [INSPIRE]. · Zbl 0971.81156
[33] B. Eden, C. Schubert and E. Sokatchev, Three loop four point correlator in N = 4 SYM, Phys. Lett.B 482 (2000) 309 [hep-th/0003096] [INSPIRE]. · Zbl 0990.81121
[34] C. Corianò and A.R. White, Gauge theory high-energy behavior from j plane unitarity, Nucl. Phys.B 468 (1996) 175 [hep-ph/9510329] [INSPIRE].
[35] C. Corianò, A.R. White and M. Wusthoff, NLO conformal symmetry in the Regge limit of QCD, Nucl. Phys.B 493 (1997) 397 [hep-ph/9609405] [INSPIRE].
[36] C. Corianò and A.R. White, The Spectrum of the O(g4) scale invariant Lipatov kernel, Phys. Rev. Lett.74 (1995) 4980 [hep-ph/9411379] [INSPIRE].
[37] C. Corianò and A. White, t channel unitarity construction of small x kernels, Acta Phys. Polon.B 26 (1995) 2005 [hep-ph/9511229] [INSPIRE].
[38] A. Bzowski and K. Skenderis, Comments on scale and conformal invariance, JHEP08 (2014) 027 [arXiv:1402.3208] [INSPIRE]. · doi:10.1007/JHEP08(2014)027
[39] N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys.B 531 (1998) 365 [hep-ph/9803241] [INSPIRE].
[40] G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett.B 552 (2003) 48 [hep-ph/0210130] [INSPIRE]. · Zbl 1005.81519
[41] S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev.D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.