×

Chaos and entanglement spreading in a non-commutative gauge theory. (English) Zbl 1404.83045

J. High Energy Phys. 2018, No. 11, Paper No. 72, 43 p. (2018); erratum ibid. 2021, No. 2, Paper No. 149, 3 p. (2021).
Summary: Holographic theories with classical gravity duals are maximally chaotic: they saturate a set of bounds on the spread of quantum information. In this paper we question whether non-locality can affect such bounds. Specifically, we consider the gravity dual of a prototypical theory with non-local interactions, namely, \( \mathcal{N}=4 \) non-commutative super Yang Mills. We construct shock waves geometries that correspond to perturbations of the thermofield double state with definite momentum and study several chaos related properties of the theory, including the butterfly velocity, the entanglement velocity, the scrambling time and the maximal Lyapunov exponent. The latter two are unaffected by the non-commutative parameter \(\theta\), however, both the butterfly and entanglement velocities increase with the strength of the non-commutativity. This implies that non-local interactions can enhance the effective light-cone for the transfer of quantum information, eluding previously conjectured bounds encountered in the context of local quantum field theory. We comment on a possible limitation on the retrieval of quantum information imposed by non-locality.

MSC:

83C57 Black holes
83C65 Methods of noncommutative geometry in general relativity
83E30 String and superstring theories in gravitational theory
81P40 Quantum coherence, entanglement, quantum correlations
81T60 Supersymmetric field theories in quantum mechanics
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems

References:

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126
[3] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253, (1998) · Zbl 0914.53048
[4] X.-L. Qi and Z. Yang, Butterfly velocity and bulk causal structure, arXiv:1705.01728 [INSPIRE].
[5] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106, (2016) · Zbl 1390.81388
[6] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at Fundamental Physics Prize Symposium, November 10, Stanford University, U.S.A. (2014), Stanford SITP seminars, November 11 and December 18 (2014).
[7] M. Blake, Universal charge diffusion and the butterfly effect in holographic theories, Phys. Rev. Lett.117 (2016) 091601 [arXiv:1603.08510] [INSPIRE].
[8] M. Blake, Universal diffusion in incoherent black holes, Phys. Rev.D 94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].
[9] R.A. Davison et al., Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev.B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
[10] M. Blake, R.A. Davison and S. Sachdev, Thermal diffusivity and chaos in metals without quasiparticles, Phys. Rev.D 96 (2017) 106008 [arXiv:1705.07896] [INSPIRE].
[11] Grozdanov, S.; Schalm, K.; Scopelliti, V., Black hole scrambling from hydrodynamics, Phys. Rev. Lett., 120, 231601, (2018)
[12] Blake, M.; Lee, H.; Liu, H., A quantum hydrodynamical description for scrambling and many-body chaos, JHEP, 10, 127, (2018) · Zbl 1402.81163
[13] S. Grozdanov, K. Schalm and V. Scopelliti, Kinetic theory for classical and quantum many-body chaos, arXiv:1804.09182 [INSPIRE].
[14] Mezei, M.; Stanford, D., On entanglement spreading in chaotic systems, JHEP, 05, 065, (2017) · Zbl 1380.81349
[15] Mezei, M., On entanglement spreading from holography, JHEP, 05, 064, (2017) · Zbl 1380.81348
[16] Larkin, AI; Ovchinnikov, YN, Quasiclassical method in the theory of superconductivity, JETP, 28, 1200, (1969)
[17] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067, (2014) · Zbl 1333.83111
[18] S.H. Shenker and D. Stanford, Multiple shocks, JHEP12 (2014) 046 [arXiv:1312.3296] [INSPIRE]. · Zbl 1390.83222
[19] Hayden, P.; Preskill, J., Black holes as mirrors: quantum information in random subsystems, JHEP, 09, 120, (2007)
[20] Y. Sekino and L. Susskind, Fast scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
[21] Roberts, DA; Stanford, D., Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett., 115, 131603, (2015)
[22] Fitzpatrick, AL; Kaplan, J., A quantum correction to chaos, JHEP, 05, 070, (2016) · Zbl 1388.83238
[23] Michel, B.; Polchinski, J.; Rosenhaus, V.; Suh, SJ, Four-point function in the IOP matrix model, JHEP, 05, 048, (2016) · Zbl 1388.81457
[24] P. Caputa, T. Numasawa and A. Veliz-Osorio, Out-of-time-ordered correlators and purity in rational conformal field theories, PTEP2016 (2016) 113B06 [arXiv:1602.06542] [INSPIRE]. · Zbl 1361.81132
[25] Perlmutter, E., Bounding the space of holographic CFTs with chaos, JHEP, 10, 069, (2016) · Zbl 1390.83128
[26] Turiaci, G.; Verlinde, H., On CFT and quantum chaos, JHEP, 12, 110, (2016) · Zbl 1390.81191
[27] P. Caputa, Y. Kusuki, T. Takayanagi and K. Watanabe, Out-of-time-ordered correlators in (\(T\)2)\(n\)\(/\)ℤ_{\(n\)}, Phys. Rev.D 96 (2017) 046020 [arXiv:1703.09939] [INSPIRE].
[28] Boer, J.; Llabrés, E.; Pedraza, JF; Vegh, D., Chaotic strings in AdS/CFT, Phys. Rev. Lett., 120, 201604, (2018)
[29] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP03 (2015) 051 [arXiv:1409.8180] [INSPIRE]. · Zbl 1388.83694
[30] Shenker, SH; Stanford, D., Stringy effects in scrambling, JHEP, 05, 132, (2015) · Zbl 1388.83500
[31] D.A. Roberts and B. Swingle, Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories, Phys. Rev. Lett.117 (2016) 091602 [arXiv:1603.09298] [INSPIRE].
[32] Giataganas, D.; Gürsoy, U.; Pedraza, JF, Strongly-coupled anisotropic gauge theories and holography, Phys. Rev. Lett., 121, 121601, (2018)
[33] Jahnke, V., Delocalizing entanglement of anisotropic black branes, JHEP, 01, 102, (2018) · Zbl 1384.83058
[34] M. Brigante et al., Viscosity bound violation in higher derivative gravity, Phys. Rev.D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].
[35] Brigante, M.; etal., The Viscosity bound and causality violation, Phys. Rev. Lett., 100, 191601, (2008)
[36] Camanho, XO; Edelstein, JD; Paulos, MF, Lovelock theories, holography and the fate of the viscosity bound, JHEP, 05, 127, (2011) · Zbl 1296.83009
[37] J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein gravity, Phys. Lett.B 699 (2011) 301 [arXiv:1011.5912] [INSPIRE].
[38] A. Rebhan and D. Steineder, Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma, Phys. Rev. Lett.108 (2012) 021601 [arXiv:1110.6825] [INSPIRE]. · Zbl 1301.81312
[39] Jahnke, V.; Misobuchi, AS; Trancanelli, D., Holographic renormalization and anisotropic black branes in higher curvature gravity, JHEP, 01, 122, (2015)
[40] Camanho, XO; Edelstein, JD, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP, 04, 007, (2010) · Zbl 1272.83044
[41] Buchel, A.; etal., Holographic GB gravity in arbitrary dimensions, JHEP, 03, 111, (2010) · Zbl 1271.81120
[42] Camanho, XO; Edelstein, JD; Maldacena, J.; Zhiboedov, A., Causality constraints on corrections to the graviton three-point coupling, JHEP, 02, 020, (2016) · Zbl 1388.83093
[43] A. Hashimoto and N. Itzhaki, Noncommutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett.B 465 (1999) 142 [hep-th/9907166] [INSPIRE]. · Zbl 0987.81108
[44] Maldacena, JM; Russo, JG, Large N limit of noncommutative gauge theories, JHEP, 09, 025, (1999) · Zbl 0957.81083
[45] A. Bergman et al., Nonlocal field theories and their gravity duals, Phys. Rev.D 65 (2002) 066005 [hep-th/0103090] [INSPIRE].
[46] Aharony, O.; Berkooz, M.; Kutasov, D.; Seiberg, N., Linear dilatons, NS five-branes and holography, JHEP, 10, 004, (1998) · Zbl 0955.81040
[47] Edalati, M.; Fischler, W.; Pedraza, JF; Tangarife Garcia, W., Fast scramblers and non-commutative gauge theories, JHEP, 07, 043, (2012) · Zbl 1397.81415
[48] Matsuo, T.; Tomino, D.; Wen, W-Y, Drag force in SYM plasma with B field from AdS/CFT, JHEP, 10, 055, (2006)
[49] Fischler, W.; Pedraza, JF; Tangarife Garcia, W., Holographic brownian motion in magnetic environments, JHEP, 12, 002, (2012)
[50] Couch, J.; Eccles, S.; Fischler, W.; Xiao, M-L, Holographic complexity and noncommutative gauge theory, JHEP, 03, 108, (2018) · Zbl 1388.81647
[51] Maldacena, JM, Eternal black holes in Anti-de Sitter, JHEP, 04, 021, (2003)
[52] M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area laws in quantum systems: mutual information and correlations, Phys. Rev. Lett.100 (2008) 070502 [arXiv:0704.3906] [INSPIRE]. · Zbl 1228.81112
[53] S. Leichenauer, Disrupting entanglement of black holes, Phys. Rev.D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].
[54] Sircar, N.; Sonnenschein, J.; Tangarife, W., Extending the scope of holographic mutual information and chaotic behavior, JHEP, 05, 091, (2016) · Zbl 1388.83322
[55] Ling, Y.; Liu, P.; Wu, J-P, Holographic butterfly effect at quantum critical points, JHEP, 10, 025, (2017) · Zbl 1383.81243
[56] Cai, R-G; Zeng, X-X; Zhang, H-Q, Influence of inhomogeneities on holographic mutual information and butterfly effect, JHEP, 07, 082, (2017) · Zbl 1380.81299
[57] M.M. Qaemmaqami, Criticality in third order Lovelock gravity and butterfly effect, Eur. Phys. J.C 78 (2018) 47 [arXiv:1705.05235] [INSPIRE].
[58] S.-F. Wu, B. Wang, X.-H. Ge and Y. Tian, Holographic RG flow of thermoelectric transport with momentum dissipation, Phys. Rev.D 97 (2018) 066029 [arXiv:1706.00718] [INSPIRE].
[59] M.M. Qaemmaqami, Butterfly effect in 3D gravity, Phys. Rev.D 96 (2017) 106012 [arXiv:1707.00509] [INSPIRE].
[60] Jeong, H-S; etal., Thermal diffusivity and butterfly velocity in anisotropic Q-Lattice models, JHEP, 01, 140, (2018)
[61] Avila, D.; Jahnke, V.; Patiño, L., Chaos, diffusivity and spreading of entanglement in magnetic branes and the strengthening of the internal interaction, JHEP, 09, 131, (2018) · Zbl 1398.81104
[62] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech.0504 (2005) P04010 [cond-mat/0503393] [INSPIRE]. · Zbl 1456.82578
[63] Abajo-Arrastia, J.; Aparicio, J.; Lopez, E., Holographic evolution of entanglement entropy, JHEP, 11, 149, (2010) · Zbl 1294.81128
[64] T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys.13 (2011) 045017 [arXiv:1008.3027] [INSPIRE]. · Zbl 1448.83015
[65] Hartman, T.; Maldacena, J., Time evolution of entanglement entropy from black hole interiors, JHEP, 05, 014, (2013) · Zbl 1342.83170
[66] H. Liu and S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett.112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].
[67] H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev.D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].
[68] Casini, H.; Liu, H.; Mezei, M., Spread of entanglement and causality, JHEP, 07, 077, (2016) · Zbl 1390.83092
[69] T. Hartman and N. Afkhami-Jeddi, Speed limits for entanglement, arXiv:1512.02695 [INSPIRE].
[70] S. Kundu and J.F. Pedraza, Spread of entanglement for small subsystems in holographic CFTs, Phys. Rev.D 95 (2017) 086008 [arXiv:1602.05934] [INSPIRE].
[71] Lokhande, SF; Oling, GWJ; Pedraza, JF, Linear response of entanglement entropy from holography, JHEP, 10, 104, (2017) · Zbl 1383.81244
[72] H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett.B 600 (2004) 142 [hep-th/0405111] [INSPIRE]. · Zbl 1247.81021
[73] H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys.A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE]. · Zbl 1116.81008
[74] Myers, RC; Sinha, A., Holographic c-theorems in arbitrary dimensions, JHEP, 01, 125, (2011) · Zbl 1214.83036
[75] Myers, RC; Singh, A., Comments on holographic entanglement entropy and RG flows, JHEP, 04, 122, (2012) · Zbl 1348.81337
[76] H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev.D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE]. · Zbl 1397.81034
[77] Kusuki, Y.; Takayanagi, T.; Umemoto, K., Holographic entanglement entropy on generic time slices, JHEP, 06, 021, (2017) · Zbl 1380.81337
[78] Douglas, MR; Hull, CM, D-branes and the noncommutative torus, JHEP, 02, 008, (1998) · Zbl 0957.81017
[79] Ardalan, F.; Arfaei, H.; Sheikh-Jabbari, MM, Noncommutative geometry from strings and branes, JHEP, 02, 016, (1999) · Zbl 0965.81124
[80] Seiberg, N.; Witten, E., String theory and noncommutative geometry, JHEP, 09, 032, (1999) · Zbl 0957.81085
[81] Alishahiha, M.; Oz, Y.; Sheikh-Jabbari, MM, Supergravity and large N noncommutative field theories, JHEP, 11, 007, (1999) · Zbl 0957.81049
[82] N. Ishibashi, S. Iso, H. Kawai and Y. Kitazawa, Wilson loops in noncommutative Yang-Mills, Nucl. Phys.B 573 (2000) 573 [hep-th/9910004] [INSPIRE]. · Zbl 0947.81137
[83] S.R. Das and S.-J. Rey, Open Wilson lines in noncommutative gauge theory and tomography of holographic dual supergravity, Nucl. Phys.B 590 (2000) 453 [hep-th/0008042] [INSPIRE]. · Zbl 0991.81117
[84] Gross, DJ; Hashimoto, A.; Itzhaki, N., Observables of noncommutative gauge theories, Adv. Theor. Math. Phys., 4, 893, (2000) · Zbl 1011.81075
[85] Gu, Y.; Qi, X-L; Stanford, D., Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP, 05, 125, (2017) · Zbl 1380.81325
[86] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602, (2006) · Zbl 1228.83110
[87] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062, (2007)
[88] Fischler, W.; Kundu, A.; Kundu, S., Holographic entanglement in a noncommutative gauge theory, JHEP, 01, 137, (2014)
[89] Karczmarek, JL; Rabideau, C., Holographic entanglement entropy in nonlocal theories, JHEP, 10, 078, (2013) · Zbl 1342.83107
[90] Karczmarek, JL; Sabella-Garnier, P., Entanglement entropy on the fuzzy sphere, JHEP, 03, 129, (2014)
[91] Sabella-Garnier, P., Mutual information on the fuzzy sphere, JHEP, 02, 063, (2015)
[92] S. Okuno, M. Suzuki and A. Tsuchiya, Entanglement entropy in scalar field theory on the fuzzy sphere, PTEP2016 (2016) 023B03 [arXiv:1512.06484] [INSPIRE]. · Zbl 1361.81153
[93] Shiba, N.; Takayanagi, T., Volume law for the entanglement entropy in non-local QFTs, JHEP, 02, 033, (2014)
[94] Kol, U.; etal., Confinement, phase transitions and non-locality in the entanglement entropy, JHEP, 06, 005, (2014)
[95] Chen, HZ; Karczmarek, JL, Entanglement entropy on a fuzzy sphere with a UV cutoff, JHEP, 08, 154, (2018) · Zbl 1396.83024
[96] Sabella-Garnier, P., Time dependence of entanglement entropy on the fuzzy sphere, JHEP, 08, 121, (2017) · Zbl 1381.83083
[97] T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys.B 253 (1985) 173 [INSPIRE].
[98] K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys.B 436 (1995) 721 [hep-th/9408169] [INSPIRE]. · Zbl 1052.83521
[99] Headrick, M.; Hubeny, VE; Lawrence, A.; Rangamani, M., Causality & holographic entanglement entropy, JHEP, 12, 162, (2014)
[100] L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [INSPIRE].
[101] A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev.D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].
[102] Agón, CA; Guijosa, A.; Pedraza, JF, Radiation and a dynamical UV/IR connection in AdS/CFT, JHEP, 06, 043, (2014)
[103] Nozaki, M.; Numasawa, T.; Takayanagi, T., Holographic local quenches and entanglement density, JHEP, 05, 080, (2013) · Zbl 1342.83111
[104] D. Bigatti and L. Susskind, Magnetic fields, branes and noncommutative geometry, Phys. Rev.D 62 (2000) 066004 [hep-th/9908056] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.