×

Time dependence of entanglement entropy on the fuzzy sphere. (English) Zbl 1381.83083

Summary: We numerically study the behaviour of entanglement entropy for a free scalar field on the noncommutative (“fuzzy”) sphere after a mass quench. It is known that the entanglement entropy before a quench violates the usual area law due to the non-local nature of the theory. By comparing our results to the ordinary sphere, we find results that, despite this non-locality, are compatible with entanglement being spread by ballistic propagation of entangled quasi-particles at a speed no greater than the speed of light. However, we also find that, when the pre-quench mass is much larger than the inverse of the short-distance cutoff of the fuzzy sphere (a regime with no commutative analogue), the entanglement entropy spreads faster than allowed by a local model.

MSC:

83C65 Methods of noncommutative geometry in general relativity
81R60 Noncommutative geometry in quantum theory
94A17 Measures of information, entropy

References:

[1] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[2] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/062
[3] H. Liu and S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett.112 (2014) 011601 [arXiv:1305.7244] [INSPIRE]. · doi:10.1103/PhysRevLett.112.011601
[4] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech.0504 (2005) P04010 [cond-mat/0503393] [INSPIRE]. · Zbl 1456.82578
[5] S. Kundu and J.F. Pedraza, Spread of entanglement for small subsystems in holographic CFTs, Phys. Rev.D 95 (2017) 086008 [arXiv:1602.05934] [INSPIRE].
[6] H. Casini, H. Liu and M. Mezei, Spread of entanglement and causality, JHEP07 (2016) 077 [arXiv:1509.05044] [INSPIRE]. · Zbl 1390.83092 · doi:10.1007/JHEP07(2016)077
[7] J.S. Cotler, M.P. Hertzberg, M. Mezei and M.T. Mueller, Entanglement growth after a global quench in free scalar field theory, JHEP11 (2016) 166 [arXiv:1609.00872] [INSPIRE]. · doi:10.1007/JHEP11(2016)166
[8] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE]. · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[9] D. Bigatti and L. Susskind, Magnetic fields, branes and noncommutative geometry, Phys. Rev.D 62 (2000) 066004 [hep-th/9908056] [INSPIRE].
[10] Y. Sekino and L. Susskind, Fast scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE]. · doi:10.1088/1126-6708/2008/10/065
[11] N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast scrambling conjecture, JHEP04 (2013) 022 [arXiv:1111.6580] [INSPIRE]. · Zbl 1342.81374 · doi:10.1007/JHEP04(2013)022
[12] L. Brady and V. Sahakian, Scrambling with matrix black holes, Phys. Rev.D 88 (2013) 046003 [arXiv:1306.5200] [INSPIRE].
[13] J.L. Karczmarek and P. Sabella-Garnier, Entanglement entropy on the fuzzy sphere, JHEP03 (2014) 129 [arXiv:1310.8345] [INSPIRE]. · doi:10.1007/JHEP03(2014)129
[14] P. Sabella-Garnier, Mutual information on the fuzzy sphere, JHEP02 (2015) 063 [arXiv:1409.7069] [INSPIRE]. · doi:10.1007/JHEP02(2015)063
[15] S. Okuno, M. Suzuki and A. Tsuchiya, Entanglement entropy in scalar field theory on the fuzzy sphere, PTEP2016 (2016) 023B03 [arXiv:1512.06484] [INSPIRE]. · Zbl 1361.81153
[16] M. Suzuki and A. Tsuchiya, A generalized volume law for entanglement entropy on the fuzzy sphere, PTEP2017 (2017) 043B07 [arXiv:1611.06336] [INSPIRE]. · Zbl 1524.81017
[17] W. Fischler, A. Kundu and S. Kundu, Holographic entanglement in a noncommutative gauge theory, JHEP01 (2014) 137 [arXiv:1307.2932] [INSPIRE]. · doi:10.1007/JHEP01(2014)137
[18] J.L. Karczmarek and C. Rabideau, Holographic entanglement entropy in nonlocal theories, JHEP10 (2013) 078 [arXiv:1307.3517] [INSPIRE]. · Zbl 1342.83107 · doi:10.1007/JHEP10(2013)078
[19] N. Shiba and T. Takayanagi, Volume law for the entanglement entropy in non-local QFTs, JHEP02 (2014) 033 [arXiv:1311.1643] [INSPIRE]. · doi:10.1007/JHEP02(2014)033
[20] D.-W. Pang, Holographic entanglement entropy of nonlocal field theories, Phys. Rev.D 89 (2014) 126005 [arXiv:1404.5419] [INSPIRE].
[21] M.R. Mohammadi Mozaffar and A. Mollabashi, Entanglement in Lifshitz-type quantum field theories, JHEP07 (2017) 120 [arXiv:1705.00483] [INSPIRE]. · Zbl 1380.83098 · doi:10.1007/JHEP07(2017)120
[22] J. Madore, The fuzzy sphere, Class. Quant. Grav.9 (1992) 69 [INSPIRE]. · Zbl 0742.53039 · doi:10.1088/0264-9381/9/1/008
[23] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73 (2001) 977 [hep-th/0106048] [INSPIRE]. · Zbl 1205.81126 · doi:10.1103/RevModPhys.73.977
[24] D. Dou and B. Ydri, Entanglement entropy on fuzzy spaces, Phys. Rev.D 74 (2006) 044014 [gr-qc/0605003] [INSPIRE].
[25] M. Srednicki, Entropy and area, Phys. Rev. Lett.71 (1993) 666 [hep-th/9303048] [INSPIRE]. · Zbl 0972.81649 · doi:10.1103/PhysRevLett.71.666
[26] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys.A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE]. · Zbl 1186.81017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.