×

Electromagnetic signatures of a strongly coupled anisotropic plasma. (English) Zbl 1301.81312

Summary: In heavy-ion collisions, quark-gluon plasma is likely to be produced with sizable initial pressure anisotropy, which may leave an imprint on electromagnetic observables. In order to model a strongly coupled anisotropic plasma, we use the AdS/CFT correspondence to calculate the current-current correlator of a weakly gauged \(\mathrm{U}(1)\) subgroup of R-symmetry in an \(\mathcal{N}=4 \) super-Yang-Mills plasma with a (temporarily) fixed anisotropy. The dual geometry, obtained previously by R. A. Janik and P. Witaszczyk [ibid. 2008, No. 9, Paper No. 026, 14 p. (2008; Zbl 1245.81096)], contains a naked singularity which however permits purely infalling boundary conditions and therefore the usual definition of a retarded correlator. We obtain numerical results for the cases of wave vector parallel and orthogonal to the direction of anisotropy, and we compare with previous isotropic results. In the (unphysical) limit of vanishing frequency (infinite time) we obtain a vanishing DC conductivity for any amount of anisotropy, but the anisotropic AC conductivities smoothly approach the isotropic case in the limit of high frequencies. We also discuss hard photon production from an anisotropic plasma and compare with existing hard-loop resummed calculations.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81V17 Gravitational interaction in quantum theory
81T20 Quantum field theory on curved space or space-time backgrounds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
82D10 Statistical mechanics of plasmas
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)

Citations:

Zbl 1245.81096

References:

[1] F. Arleo et al., Hard probes in heavy-ion collisions at the LHC: photon physics in heavy ion collisions at the LHC, Write up of the working group Photon Physics for the CERN Yellow Report on Hard Probes in Heavy Ion Collisions at the LHC, hep-ph/0311131 [SPIRES].
[2] P. Stankus, Direct photon production in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci.55 (2005) 517 [SPIRES]. · doi:10.1146/annurev.nucl.53.041002.110533
[3] P. Aurenche, F. Gelis, R. Kobes and H. Zaraket, Bremsstrahlung and photon production in thermal QCD, Phys. Rev.D 58 (1998) 085003 [hep-ph/9804224] [SPIRES].
[4] P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: Complete leading order results, JHEP12 (2001) 009 [hep-ph/0111107] [SPIRES]. · doi:10.1088/1126-6708/2001/12/009
[5] P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP06 (2002) 030 [hep-ph/0204343] [SPIRES]. · doi:10.1088/1126-6708/2002/06/030
[6] J.-P. Blaizot and F. Gelis, Photon and dilepton production in the quark-gluon plasma: Perturbation theory vs lattice QCD, Eur. Phys. J.C 43 (2005) 375 [hep-ph/0504144] [SPIRES]. · doi:10.1140/epjc/s2005-02292-y
[7] S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP12 (2006) 015 [hep-th/0607237] [SPIRES]. · doi:10.1088/1126-6708/2006/12/015
[8] A. Parnachev and D.A. Sahakyan, Photoemission with Chemical Potential from QCD Gravity Dual, Nucl. Phys.B 768 (2007) 177 [hep-th/0610247] [SPIRES]. · doi:10.1016/j.nuclphysb.2007.01.015
[9] D. Mateos and L. Patino, Bright branes for strongly coupled plasmas, JHEP11 (2007) 025 [arXiv:0709.2168] [SPIRES]. · Zbl 1245.81101 · doi:10.1088/1126-6708/2007/11/025
[10] A. Nata Atmaja and K. Schalm, Photon and Dilepton Production in Soft Wall AdS/QCD, JHEP08 (2010) 124 [arXiv:0802.1460] [SPIRES]. · Zbl 1290.81157 · doi:10.1007/JHEP08(2010)124
[11] B. Schenke and M. Strickland, Photon production from an anisotropic quark-gluon plasma, Phys. Rev.D 76 (2007) 025023 [hep-ph/0611332] [SPIRES].
[12] A. Ipp, A. DiPiazza, J. Evers and C.H. Keitel, Photon polarization as a probe for quark-gluon plasma dynamics, Phys. Lett.B 666 (2008) 315 [arXiv:0710.5700] [SPIRES].
[13] M. Martinez and M. Strickland, Measuring QGP thermalization time with dileptons, Phys. Rev. Lett.100 (2008) 102301 [arXiv:0709.3576] [SPIRES]. · doi:10.1103/PhysRevLett.100.102301
[14] M. Martinez and M. Strickland, Pre-equilibrium dilepton production from an anisotropic quark-gluon plasma, Phys. Rev.C 78 (2008) 034917 [arXiv:0805.4552] [SPIRES].
[15] M. Martinez and M. Strickland, Suppression of forward dilepton production from an anisotropic quark-gluon plasma, Eur. Phys. J.C 61 (2009) 905 [arXiv:0808.3969] [SPIRES]. · doi:10.1140/epjc/s10052-008-0851-8
[16] L. Bhattacharya and P. Roy, Measuring isotropization time of quark-gluon-Plasma from direct photon at RHIC, Phys. Rev.C 79 (2009) 054910 [arXiv:0812.1478] [SPIRES].
[17] L. Bhattacharya and P. Roy, Rapidity distribution of photons from an anisotropic quark-gluon-Plasma, Phys. Rev.C 81 (2010) 054904 [arXiv:0907.3607] [SPIRES].
[18] P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen and S.A. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett.B 503 (2001) 58 [hep-ph/0101136] [SPIRES].
[19] M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at \(\sqrt{{{s_{NN}}}} = 200\) GeV, Phys. Rev.C 78 (2008) 034915 [arXiv:0804.4015] [SPIRES].
[20] M. Martinez and M. Strickland, Dissipative Dynamics of Highly Anisotropic Systems, Nucl. Phys.A 848 (2010) 183 [arXiv:1007.0889] [SPIRES].
[21] M. Martinez and M. Strickland, Non-boost-invariant anisotropic dynamics, Nucl. Phys.A 856 (2011) 68 [arXiv:1011.3056] [SPIRES].
[22] S. Mrowczynski, A. Rebhan and M. Strickland, Hard-loop effective action for anisotropic plasmas, Phys. Rev.D 70 (2004) 025004 [hep-ph/0403256] [SPIRES].
[23] A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett.94 (2005) 102303 [hep-ph/0412016] [SPIRES]. · doi:10.1103/PhysRevLett.94.102303
[24] P.B. Arnold, G.D. Moore and L.G. Yaffe, The fate of non-abelian plasma instabilities in 3 + 1 dimensions, Phys. Rev.D 72 (2005) 054003 [hep-ph/0505212] [SPIRES].
[25] A. Rebhan, P. Romatschke and M. Strickland, Dynamics of quark-gluon plasma instabilities in discretized hard-loop approximation, JHEP09 (2005) 041 [hep-ph/0505261] [SPIRES]. · doi:10.1088/1126-6708/2005/09/041
[26] P.B. Arnold and G.D. Moore, QCD plasma instabilities: The nonabelian cascade, Phys. Rev.D 73 (2006) 025006 [hep-ph/0509206] [SPIRES].
[27] D. Bödeker and K. Rummukainen, Non-abelian plasma instabilities for strong anisotropy, JHEP07 (2007) 022 [arXiv:0705.0180] [SPIRES]. · doi:10.1088/1126-6708/2007/07/022
[28] P.B. Arnold and G.D. Moore, Non-Abelian Plasma Instabilities for Extreme Anisotropy, Phys. Rev.D 76 (2007) 045009 [arXiv:0706.0490] [SPIRES].
[29] A. Ipp, A. Rebhan and M. Strickland, Non-Abelian plasma instabilities: SU(3) vs. SU(2), arXiv:1012.0298 [SPIRES].
[30] P. Romatschke and A. Rebhan, Plasma Instabilities in an Anisotropically Expanding Geometry, Phys. Rev. Lett.97 (2006) 252301 [hep-ph/0605064] [SPIRES]. · doi:10.1103/PhysRevLett.97.252301
[31] A. Rebhan, M. Strickland and M. Attems, Instabilities of an anisotropically expanding non-Abelian plasma: 1D + 3V discretized hard-loop simulations, Phys. Rev.D 78 (2008) 045023 [arXiv:0802.1714] [SPIRES].
[32] A. Rebhan and D. Steineder, Collective modes and instabilities in anisotropically expanding ultarelativistic plasmas, Phys. Rev.D 81 (2010) 085044 [arXiv:0912.5383] [SPIRES].
[33] A. Ipp, C.H. Keitel and J. Evers, Yoctosecond photon pulses from quark-gluon plasmas, Phys. Rev. Lett.103 (2009) 152301 [arXiv:0904.4503] [SPIRES]. · doi:10.1103/PhysRevLett.103.152301
[34] R.A. Janik and P. Witaszczyk, Towards the description of anisotropic plasma at strong coupling, JHEP09 (2008) 026 [arXiv:0806.2141] [SPIRES]. · Zbl 1245.81096 · doi:10.1088/1126-6708/2008/09/026
[35] R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev.D 73 (2006) 045013 [hep-th/0512162] [SPIRES].
[36] Y.V. Kovchegov and A. Taliotis, Early time dynamics in heavy ion collisions from AdS/CFT correspondence, Phys. Rev.C 76 (2007) 014905 [arXiv:0705.1234] [SPIRES].
[37] D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS5, JHEP08 (2008) 027 [arXiv:0803.3226] [SPIRES]. · doi:10.1088/1126-6708/2008/08/027
[38] P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett.102 (2009) 211601 [arXiv:0812.2053] [SPIRES]. · doi:10.1103/PhysRevLett.102.211601
[39] S. Lin and E. Shuryak, Grazing Collisions of Gravitational Shock W aves and Entropy Production in Heavy Ion Collision, Phys. Rev.D 79 (2009) 124015 [arXiv:0902.1508] [SPIRES].
[40] S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS5with applications to multiplicity estimates in heavy-ion collisions, JHEP11 (2009) 050 [arXiv:0902.4062] [SPIRES]. · doi:10.1088/1126-6708/2009/11/050
[41] P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev.D 82 (2010) 026006 [arXiv:0906.4426] [SPIRES].
[42] P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS5spacetime, Phys. Rev. Lett.106 (2011) 021601 [arXiv:1011.3562] [SPIRES]. · doi:10.1103/PhysRevLett.106.021601
[43] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [SPIRES]. · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[44] M.P. Heller, R.A. Janik and R. Peschanski, Hydrodynamic Flow of the quark-gluon Plasma and Gauge/Gravity Correspondence, Acta Phys. Polon.B 39 (2008) 3183 [arXiv:0811.3113] [SPIRES].
[45] G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP10 (2009) 043 [arXiv:0906.4423] [SPIRES]. · doi:10.1088/1126-6708/2009/10/043
[46] P. Romatschke and M. Strickland, Collective Modes of an Anisotropic quark-gluon Plasma, Phys. Rev.D 68 (2003) 036004 [hep-ph/0304092] [SPIRES].
[47] D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [SPIRES]. · doi:10.1088/1126-6708/2002/09/042
[48] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett.101 (2008) 081601 [arXiv:0805.0150] [SPIRES]. · Zbl 1228.81244 · doi:10.1103/PhysRevLett.101.081601
[49] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP05 (2009) 085 [arXiv:0812.2909] [SPIRES]. · doi:10.1088/1126-6708/2009/05/085
[50] S. Caron-Huot, P.M. Chesler and D. Teaney, Fluctuation, dissipation and thermalization in non-equilibrium AdS5black hole geometries, Phys. Rev.D 84 (2011) 026012 [arXiv:1102.1073] [SPIRES].
[51] D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, arXiv:1105.3472 [SPIRES]. · Zbl 1298.81400
[52] D. Mateos and D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma, JHEP07 (2011) 054 [arXiv:1106.1637] [SPIRES]. · Zbl 1298.81400 · doi:10.1007/JHEP07(2011)054
[53] T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP06 (2009) 084 [arXiv:0905.0688] [SPIRES]. · doi:10.1088/1126-6708/2009/06/084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.