×

Entanglement entropy on a fuzzy sphere with a UV cutoff. (English) Zbl 1396.83024

Summary: We introduce a UV cutoff into free scalar field theory on the noncommutative (fuzzy) two-sphere. Due to the IR-UV connection, varying the UV cutoff allows us to control the effective nonlocality scale of the theory. In the resulting fuzzy geometry, we establish which degrees of freedom lie within a specific geometric subregion and compute the associated vacuum entanglement entropy. Entanglement entropy for regions smaller than the effective nonlocality scale is extensive, while entanglement entropy for regions larger than the effective nonlocality scale follows the area law. This reproduces features previously obtained in the strong coupling regime through holography. We also show that mutual information is unaffected by the UV cutoff.

MSC:

83C65 Methods of noncommutative geometry in general relativity
81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602, (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[2] Li, W.; Takayanagi, T., Holography and entanglement in flat spacetime, Phys. Rev. Lett., 106, 141301, (2011) · doi:10.1103/PhysRevLett.106.141301
[3] Edalati, M.; Fischler, W.; Pedraza, JF; Tangarife Garcia, W., Fast scramblers and non-commutative gauge theories, JHEP, 07, 043, (2012) · Zbl 1397.81415 · doi:10.1007/JHEP07(2012)043
[4] Barbon, JLF; Fuertes, CA, A note on the extensivity of the holographic entanglement entropy, JHEP, 05, 053, (2008) · doi:10.1088/1126-6708/2008/05/053
[5] Barbon, JLF; Fuertes, CA, Holographic entanglement entropy probes (non)locality, JHEP, 04, 096, (2008) · Zbl 1246.81204 · doi:10.1088/1126-6708/2008/04/096
[6] Fischler, W.; Kundu, A.; Kundu, S., Holographic entanglement in a noncommutative gauge theory, JHEP, 01, 137, (2014) · doi:10.1007/JHEP01(2014)137
[7] Karczmarek, JL; Rabideau, C., Holographic entanglement entropy in nonlocal theories, JHEP, 10, 078, (2013) · Zbl 1342.83107 · doi:10.1007/JHEP10(2013)078
[8] D. Dou and B. Ydri, Entanglement entropy on fuzzy spaces, Phys. Rev.D 74 (2006) 044014 [gr-qc/0605003] [INSPIRE].
[9] Karczmarek, JL; Sabella-Garnier, P., Entanglement entropy on the fuzzy sphere, JHEP, 03, 129, (2014) · doi:10.1007/JHEP03(2014)129
[10] Sabella-Garnier, P., Mutual information on the fuzzy sphere, JHEP, 02, 063, (2015) · doi:10.1007/JHEP02(2015)063
[11] Sabella-Garnier, P., Time dependence of entanglement entropy on the fuzzy sphere, JHEP, 08, 121, (2017) · Zbl 1381.83083 · doi:10.1007/JHEP08(2017)121
[12] Rabideau, C., Perturbative entanglement entropy in nonlocal theories, JHEP, 09, 180, (2015) · Zbl 1388.83540 · doi:10.1007/JHEP09(2015)180
[13] S. Okuno, M. Suzuki and A. Tsuchiya, Entanglement entropy in scalar field theory on the fuzzy sphere, PTEP2016 (2016) 023B03 [arXiv:1512.06484] [INSPIRE]. · Zbl 1361.81153
[14] M. Suzuki and A. Tsuchiya, A generalized volume law for entanglement entropy on the fuzzy sphere, PTEP2017 (2017) 043B07 [arXiv:1611.06336] [INSPIRE]. · Zbl 1524.81017
[15] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev.D 34 (1986) 373 [INSPIRE]. · Zbl 1222.83077
[16] Srednicki, M., Entropy and area, Phys. Rev. Lett., 71, 666, (1993) · Zbl 0972.81649 · doi:10.1103/PhysRevLett.71.666
[17] Minwalla, S.; Raamsdonk, M.; Seiberg, N., Noncommutative perturbative dynamics, JHEP, 02, 020, (2000) · Zbl 0959.81108 · doi:10.1088/1126-6708/2000/02/020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.