×

Topology optimization for three-dimensional elastoplastic architected materials using a path-dependent adjoint method. (English) Zbl 07863143

Summary: This article introduces a computational design framework for obtaining three-dimensional (3D) periodic elastoplastic architected materials with enhanced performance, subject to uniaxial or shear strain. A nonlinear finite element model accounting for plastic deformation is developed, where a Lagrange multiplier approach is utilized to impose periodicity constraints. The analysis assumes that the material obeys a von Mises plasticity model with linear isotropic hardening. The finite element model is combined with a corresponding path-dependent adjoint sensitivity formulation, which is derived analytically. The optimization problem is parametrized using the solid isotropic material penalization method. Designs are optimized for either end compliance or toughness for a given prescribed displacement. Such a framework results in producing materials with enhanced performance through much better utilization of an elastoplastic material. Several 3D examples are used to demonstrate the effectiveness of the mathematical framework.
{© 2020 John Wiley & Sons, Ltd.}

MSC:

74Pxx Optimization problems in solid mechanics
74Axx Generalities, axiomatics, foundations of continuum mechanics of solids
74Exx Material properties given special treatment
Full Text: DOI

References:

[1] OsanovM, GuestJK. Topology optimization for architected materials design. Annu Rev Mat Res. 2016;46:211‐233.
[2] SchaedlerTA, JacobsenAJ, TorrentsA, et al. Ultralight metallic microlattices. Science. 2011;334(6058):962‐965.
[3] AbueiddaDW, KarimiP, JinJ‐M, SobhNA, JasiukIM, Ostoja‐StarzewskiM. Shielding effectiveness and bandgaps of interpenetrating phase composites based on the Schwarz primitive surface. J Appl Phys. 2018;124(17):175102.
[4] MaskeryI, SturmL, AremuA, et al. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer. 2018;152:62‐71.
[5] Al‐KetanO, RowshanR, PalazottoAN, Al‐RubRKA. On mechanical properties of cellular steel solids with shell‐like periodic architectures fabricated by selective laser sintering. J Eng Mater Technol. 2019;141(2):021009.
[6] BarthelatF. Architectured materials in engineering and biology: fabrication, structure, mechanics and performance. Int Mater Rev. 2015;60(8):413‐430.
[7] FleckN, DeshpandeV, AshbyM. Micro‐architectured materials: past, present and future. Proc Royal Soc A Math Phys Eng Sci. 2010;466(2121):2495‐2516.
[8] AbueiddaDW, ElhebearyM, ShiangC‐SA, Al‐RubRKA, JasiukIM. Compression and buckling of microarchitectured Neovius‐lattice. Extreme Mech Lett. 2020;37:100688.
[9] Al‐RubRKA, AbueiddaDW, DalaqAS. Thermo‐electro‐mechanical properties of interpenetrating phase composites with periodic architectured reinforcements. From Creep Damage Mechanics to Homogenization Methods. New York, NY: Springer; 2015:1‐18.
[10] JieG, HaoL, LiangG, MiX. Topological shape optimization of 3D micro‐structured materials using energy‐based homogenization method. Adv Eng Softw. 2018;116:89‐102.
[11] ChristensenRM. Mechanics of cellular and other low‐density materials. Int J Solids Struct. 2000;37(1-2):93‐104. · Zbl 1075.74029
[12] vanDijkNP, MauteK, LangelaarM, Van KeulenF. Level‐set methods for structural topology optimization: a review. Struct Multidiscip Optim. 2013;48(3):437‐472.
[13] RyuY, HaririanM, WuC, AroraJ. Structural design sensitivity analysis of nonlinear response. Comput Struct. 1985;21(1-2):245‐255. · Zbl 0589.73084
[14] BendsøeMP, KikuchiN. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng. 1988;71(2):197‐224. · Zbl 0671.73065
[15] BendøseM, SigmundO. Topology Optimization: Theory Methods and Applications. New York, NY: Springer; 2003.
[16] WangY, XuH, PasiniD. Multiscale isogeometric topology optimization for lattice materials. Comput Methods Appl Mech Eng. 2017;316:568‐585. · Zbl 1439.74301
[17] GogartyE, PasiniD. Hierarchical topology optimization for bone tissue scaffold: preliminary results on the design of a fracture fixation plate. Engineering and Applied Sciences Optimization. Cham, Switzerland: Springer; 2015:311‐340.
[18] ChinTW, LeaderMK, KennedyGJ. A scalable framework for large‐scale 3D multimaterial topology optimization with octree‐based mesh adaptation. Adv Eng Softw. 2019;135:102682.
[19] LeC, NoratoJ, BrunsT, HaC, TortorelliD. Stress‐based topology optimization for continua. Struct Multidiscip Optim. 2010;41(4):605‐620.
[20] ZhangS, GainAL, NoratoJA. Stress‐based topology optimization with discrete geometric components. Comput Methods Appl Mech Eng. 2017;325:1‐21. · Zbl 1439.74307
[21] KollmannHT, AbueiddaDW, KoricS, GuleryuzE, SobhNA. Deep learning for topology optimization of 2D metamaterials. Mater Des. 2020;196:109098.
[22] GaoJ, XueH, GaoL, LuoZ. Topology optimization for auxetic metamaterials based on isogeometric analysis. Comput Methods Appl Mech Eng. 2019;352:211‐236. · Zbl 1441.74160
[23] HassaniB, HintonE. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput Struct. 1998;69(6):707‐717. · Zbl 0948.74048
[24] HassaniB, HintonE. A review of homogenization and topology optimization II—analytical and numerical solution of homogenization equations. Comput Struct. 1998;69(6):719‐738.
[25] SigmundO. Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct. 1994;31(17):2313‐2329. · Zbl 0946.74557
[26] SigmundO. Tailoring materials with prescribed elastic properties. Mech Mater. 1995;20(4):351‐368.
[27] HassaniB, HintonE. A review of homogenization and topology optimization III—topology optimization using optimality criteria. Comput Struct. 1998;69(6):739‐756. · Zbl 0948.74048
[28] LiuJ, GaynorAT, ChenS, et al. Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim. 2018;57(6):2457‐2483.
[29] ZegardT, PaulinoGH. Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim. 2016;53(1):175‐192.
[30] FernandezF, CompelWS, LewickiJP, TortorelliDA. Optimal design of fiber reinforced composite structures and their direct ink write fabrication. Comput Methods Appl Mech Eng. 2019;353:277‐307. · Zbl 1441.74148
[31] GibsonLJ, AshbyMF. Cellular Solids: Structure and Properties. Cambridge, MA: Cambridge University Press; 1999.
[32] PasiniD, GuestJK. Imperfect architected materials: mechanics and topology optimization. MRS Bull. 2019;44(10):766‐772.
[33] ZhangXS, deSturlerE, PaulinoGH. Stochastic sampling for deterministic structural topology optimization with many load cases: density‐based and ground structure approaches. Comput Methods Appl Mech Eng. 2017;325:463‐487. · Zbl 1439.74314
[34] TsayJ, AroraJ. Optimum design of nonlinear structures with path dependent response. Struct Optim. 1989;1(4):203‐213.
[35] VidalC, LeeH‐S, HaberR. The consistent tangent operator for design sensitivity analysis of history‐dependent response. Comput Syst Eng. 1991;2(5-6):509‐523.
[36] MichalerisP, TortorelliDA, VidalCA. Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng. 1994;37(14):2471‐2499. · Zbl 0808.73057
[37] BehrouR, LawryM, MauteK. Level set topology optimization of structural problems with interface cohesion. Int J Numer Methods Eng. 2017;112(8):990‐1016. · Zbl 07867240
[38] AlberdiR, ZhangG, LiL, KhandelwalK. A unified framework for nonlinear path‐dependent sensitivity analysis in topology optimization. Int J Numer Methods Eng. 2018;115(1):1‐56. · Zbl 07864826
[39] SwanCC, KosakaI. Voigt-Reuss topology optimization for structures with nonlinear material behaviors. Int J Numer Methods Eng. 1997;40(20):3785‐3814. · Zbl 0908.73053
[40] JamesKA, WaismanH. Topology optimization of viscoelastic structures using a time‐dependent adjoint method. Comput Methods Appl Mech Eng. 2015;285:166‐187. · Zbl 1423.74728
[41] BendsøeMP, DíazAR. A method for treating damage related criteria in optimal topology design of continuum structures. Struct Optim. 1998;16(2-3):108‐115.
[42] JamesKA, WaismanH. Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. Comput Methods Appl Mech Eng. 2014;268:614‐631. · Zbl 1295.74083
[43] YiB, ZhouY, YoonGH, SaitouK. Topology optimization of functionally‐graded lattice structures with buckling constraints. Comput Methods Appl Mech Eng. 2019;354:593‐619. · Zbl 1441.74179
[44] AbueiddaDW, KoricS, SobhNA. Topology optimization of 2D structures with nonlinearities using deep learning. Comput Struct. 2020;237:106283.
[45] GeaHC, LuoJ. Topology optimization of structures with geometrical nonlinearities. Comput Struct. 2001;79(20-21):1977‐1985.
[46] WangF, LazarovBS, SigmundO, JensenJS. Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng. 2014;276:453‐472. · Zbl 1423.74768
[47] ChiH, RamosDL, RamosASJr, PaulinoGH. On structural topology optimization considering material nonlinearity: plane strain versus plane stress solutions. Adv Eng Softw. 2019;131:217‐231.
[48] ZhangG, KhandelwalK. Computational design of finite strain auxetic metamaterials via topology optimization and nonlinear homogenization. Comput Methods Appl Mech Eng. 2019;356:490‐527. · Zbl 1441.74181
[49] BrunsTE, TortorelliDA. Topology optimization of non‐linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng. 2001;190(26‐27):3443‐3459. · Zbl 1014.74057
[50] WallinM, IvarssonN, TortorelliD. Stiffness optimization of non‐linear elastic structures. Comput Methods Appl Mech Eng. 2018;330:292‐307. · Zbl 1439.74053
[51] WallinM, JönssonV, WingrenE. Topology optimization based on finite strain plasticity. Struct Multidiscip Optim. 2016;54(4):783‐793.
[52] LiL, ZhangG, KhandelwalK. Design of energy dissipating elastoplastic structures under cyclic loads using topology optimization. Struct Multidiscip Optim. 2017;56(2):391‐412.
[53] ZhaoT, RamosASJr, PaulinoGH. Material nonlinear topology optimization considering the von Mises criterion through an asymptotic approach: max strain energy and max load factor formulations. Int J Numer Methods Eng. 2019;118(13):804‐828. · Zbl 07865199
[54] SchwarzS, MauteK, RammE. Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng. 2001;190(15):2135‐2155. · Zbl 1067.74052
[55] LiL, ZhangG, KhandelwalK. Topology optimization of energy absorbing structures with maximum damage constraint. Int J Numer Methods Eng. 2017;112(7):737‐775. · Zbl 07867230
[56] MauteK, SchwarzS, RammE. Adaptive topology optimization of elastoplastic structures. Struct Optim. 1998;15(2):81‐91.
[57] NakshatralaP, TortorelliD. Topology optimization for effective energy propagation in rate‐independent elastoplastic material systems. Comput Methods Appl Mech Eng. 2015;295:305‐326. · Zbl 1423.74755
[58] ZhangG, LiL, KhandelwalK. Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements. Struct Multidiscip Optim. 2017;55(6):1965‐1988.
[59] AlberdiR, KhandelwalK. Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints. Finite Elem Anal Des. 2017;133:42‐61.
[60] KatoJ, HoshibaH, TakaseS, TeradaK, KyoyaT. Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim. 2015;52(3):507‐526.
[61] IvarssonN, WallinM, TortorelliD. Topology optimization of finite strain viscoplastic systems under transient loads. Int J Numer Methods Eng. 2018;114(13):1351‐1367. · Zbl 07878367
[62] IvarssonN, WallinM, TortorelliDA. Topology optimization for designing periodic microstructures based on finite strain viscoplasticity. Struct Multidiscip Optim. 2020;61(6):2501‐2521.
[63] KennedyGJ, ChinTW. A sequential convex optimization method for multimaterial compliance design problems. Comput Struct. 2019;212:110‐124.
[64] PizzolatoA, SharmaA, MauteK, SciacovelliA, VerdaV. Multi‐scale topology optimization of multi‐material structures with controllable geometric complexity—applications to heat transfer problems. Comput Methods Appl Mech Eng. 2019;357:112552. · Zbl 1442.74177
[65] SandersED, AguilóMA, PaulinoGH. Multi‐material continuum topology optimization with arbitrary volume and mass constraints. Comput Methods Appl Mech Eng. 2018;340:798‐823. · Zbl 1440.74312
[66] ZhangXS, PaulinoGH, RamosAS. Multi‐material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct Multidiscip Optim. 2018;57(1):161‐182.
[67] AlberdiR, KhandelwalK. Bi‐material topology optimization for energy dissipation with inertia and material rate effects under finite deformations. Finite Elem Anal Des. 2019;164:18‐41.
[68] SwanC, KosakaI. Homogenization‐based analysis and design of composites. Comput Struct. 1997;64(1-4):603‐621. · Zbl 0967.74573
[69] SwanC, AroraJS. Topology design of material layout in structured composites of high stiffness and strength. Struct Optim. 1997;13(1):45‐59.
[70] WangF, SigmundO, JensenJS. Design of materials with prescribed nonlinear properties. J Mech Phys Solids. 2014;69:156‐174.
[71] ChenW, XiaL, YangJ, HuangX. Optimal microstructures of elastoplastic cellular materials under various macroscopic strains. Mech Mater. 2018;118:120‐132.
[72] AlberdiR, KhandelwalK. Design of periodic elastoplastic energy dissipating microstructures. Struct Multidiscip Optim. 2019;59(2):461‐483.
[73] CarstensenJV, LotfiR, GuestJK, ChenW, SchroersJ. Topology optimization of cellular materials with maximized energy absorption. Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2B: 41st Design Automation Conference. Boston, MA. August 2‐5, 2015:V02BT03A014.
[74] Bazant Zdenek, P. Scaling of Structural Strength (Second Edition). Oxford, UK: Butterworth‐Heinemann; 2005. · Zbl 1097.74002
[75] BischoffPH, PerrySH. Compressive behaviour of concrete at high strain rates. Mater Struct. 1991;24(6):425‐450.
[76] BauerJ, HengsbachS, TesariI, SchwaigerR, KraftO. High‐strength cellular ceramic composites with 3D microarchitecture. Proc Natl Acad Sci. 2014;111(7):2453‐2458.
[77] AmirO, BogomolnyM. Topology optimization for conceptual design of reinforced concrete structures. Paper presented at: 9th World Congress on Structural and Multidisciplinary Optimization; 2011.
[78] AmirO. A topology optimization procedure for reinforced concrete structures. Comput Struct. 2013;114:46‐58.
[79] AmirO, SigmundO. Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct Multidiscip Optim. 2013;47(2):157‐174. · Zbl 1274.74307
[80] ZhouM, RozvanyG. The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng. 1991;89(1-3):309‐336.
[81] BendsøeMP. Optimal shape design as a material distribution problem. Struct Optim. 1989;1(4):193‐202.
[82] AnthoineA. Derivation of the in‐plane elastic characteristics of masonry through homogenization theory. Int J Solids Struct. 1995;32(2):137‐163. · Zbl 0868.73010
[83] MichelJ‐C, MoulinecH, SuquetP. Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng. 1999;172(1-4):109‐143. · Zbl 0964.74054
[84] MieheC, KochA. Computational micro‐to‐macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech. 2002;72(4-5):300‐317. · Zbl 1032.74010
[85] ZienkiewiczOC, TaylorRL, ZhuJZ. The Finite Element Method: Its Basis and Fundamentals (Seventh Edition). Oxford, UK: Butterworth‐Heinemann; 2013. · Zbl 1307.74005
[86] BonetJ, WoodRD. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge, MA: Cambridge University Press; 1997. · Zbl 0891.73001
[87] SimoJC, HughesTJ. Computational Inelasticity. Berlin, Germany: Springer Science & Business Media; 2006.
[88] WilkinsM. Calculation of elastic‐plastic flow. In: AlderB (ed.), PerribachS (ed.), EotenbergM (ed.), et al., eds. Methods of Computational Physics. New York, NY: Academic Press; 1964.
[89] AllaireG, JouveF, ToaderA‐M. Structural optimization using sensitivity analysis and a level‐set method. J Comput Phys. 2004;194(1):363‐393. · Zbl 1136.74368
[90] WangMY, WangX, GuoD. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;192(1-2):227‐246. · Zbl 1083.74573
[91] JogCS, HaberRB. Stability of finite element models for distributed‐parameter optimization and topology design. Comput Methods Appl Mech Eng. 1996;130(3-4):203‐226. · Zbl 0861.73072
[92] SigmundO, PeterssonJ. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh‐dependencies and local minima. Struct Optim. 1998;16(1):68‐75.
[93] JanssonS. Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure. Int J Solids Struct. 1992;29(17):2181‐2200. · Zbl 0825.73426
[94] Sobieszczanski‐SobieskiJ. Sensitivity of complex, internally coupled systems. AIAA J. 1990;28(1):153‐160.
[95] SethianJA, WiegmannA. Structural boundary design via level set and immersed interface methods. J Comput Phys. 2000;163(2):489‐528. · Zbl 0994.74082
[96] AlmeidaSR, PaulinoGH, SilvaEC. Layout and material gradation in topology optimization of functionally graded structures: a global-local approach. Struct Multidiscip Optim. 2010;42(6):855‐868. · Zbl 1274.74305
[97] WangY, LuoZ, ZhangN, KangZ. Topological shape optimization of microstructural metamaterials using a level set method. Comput Mater Sci. 2014;87:178‐186.
[98] SvanbergK. The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng. 1987;24(2):359‐373. · Zbl 0602.73091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.