×

Topology optimization for auxetic metamaterials based on isogeometric analysis. (English) Zbl 1441.74160

Summary: In this paper, an effective and efficient topology optimization method, termed as Isogeometric Topology Optimization (ITO), is proposed for systematic design of both 2D and 3D auxetic metamaterials based on isogeometric analysis (IGA). Firstly, a density distribution function (DDF) with the desired smoothness and continuity, to represent the topological changes of structures, is constructed using the Shepard function and non-uniform rational B-splines (NURBS) basis functions. Secondly, an energy-based homogenization method (EBHM) to evaluate material effective properties is numerically implemented by IGA, with the imposing of the periodic boundary formulation on material microstructure. Thirdly, a topology optimization formulation for 2D and 3D auxetic metamaterials is developed based on the DDF, where the objective function is defined as a combination of the homogenized elastic tensor and the IGA is applied to solve the structural responses. A relaxed optimality criteria (OC) method is used to update the design variables, due to the non-monotonic property of the problem. Finally, several numerical examples are used to demonstrate the effectiveness and efficiency of the proposed method. A series of auxetic microstructures with different deformation mechanisms (e.g. the re-entrant and chiral) can be obtained. The auxetic behavior of material microstructures are numerically validated using ANSYS, and the optimized designs are prototyped using the Selective Laser Sintering (SLS) technique.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
65D07 Numerical computation using splines
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics

References:

[1] Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L., Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog. Mater. Sci., 94, 114-173 (2018)
[2] Lakes, R., Foam structures with a negative Poisson’s ratio, Science, 235, 1038-1041 (1987)
[3] Huang, C.; Chen, L., Negative Poisson’s ratio in modern functional materials, Adv. Mater., 28, 8079-8096 (2016)
[4] Masters, I. G.; Evans, K. E., Models for the elastic deformation of honeycombs, Compos. Struct., 35, 403-422 (1996)
[5] Smith, C.; Grima, J.; Evans, K., A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model, Acta Mater., 48, 4349-4356 (2000)
[6] Spadoni, A.; Ruzzene, M., Elasto-static micropolar behavior of a chiral auxetic lattice, J. Mech. Phys. Solids, 60, 156-171 (2012)
[7] Frenzel, T.; Kadic, M.; Wegener, M., Three-dimensional mechanical metamaterials with a twist, Science, 358, 1072-1074 (2017)
[8] Grima, J. N.; Evans, K. E., Auxetic behavior from rotating squares, Vol. 19, 1563-1565 (2000), Springer
[9] Ren, X.; Das, R.; Tran, P.; Ngo, T. D.; Xie, Y. M., Auxetic metamaterials and structures: a review, Smart Mater. Struct., 27, Article 23001 pp. (2018)
[10] Saxena, K. K.; Das, R.; Calius, E. P., Three decades of auxetics research — materials with negative Poisson’s ratio: A review, Adv. Eng. Mater., 18, 1847-1870 (2016)
[11] Cadman, J. E.; Zhou, S.; Chen, Y.; Li, Q., On design of multi-functional microstructural materials, J. Mater. Sci. (2013)
[12] Osanov, M.; Guest, J. K., Topology optimization for architected materials design, Annu. Rev. Mater. Res., 46, 211-233 (2016)
[13] Bendsœ, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003) · Zbl 1059.74001
[14] Bendsœ, M. P.; Kikuchi, N., Generating optimal topologies in stuctural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[15] Zhou, M.; Rozvany, G. I.N., The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Engrg., 89, 309-336 (1991)
[16] Bendsœ, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635-654 (1999) · Zbl 0957.74037
[17] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 885-969 (1993)
[18] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 489-528 (2000) · Zbl 0994.74082
[19] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227-246 (2003) · Zbl 1083.74573
[20] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363-393 (2004) · Zbl 1136.74368
[21] Guedes, J. M.J.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Engrg., 83, 143-198 (1990) · Zbl 0737.73008
[22] Sigmund, O., Materials with prescribed constitutive parameters: An inverse homogenization problem, Int. J. Solids Struct., 31, 2313-2329 (1994) · Zbl 0946.74557
[23] Guest, J. K.; Prévost, J. H., Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability, Int. J. Solids Struct. (2006) · Zbl 1120.74712
[24] Clausen, A.; Wang, F.; Jensen, J. S.; Sigmund, O.; Lewis, J. A., Topology optimized architectures with programmable Poisson’s ratio over large deformations, Adv. Mater., 27, 5523-5527 (2015)
[25] Li, H.; Luo, Z.; Gao, L.; Walker, P., Topology optimization for functionally graded cellular composites with metamaterials by level sets, Comput. Methods Appl. Mech. Engrg., 328, 340-364 (2018) · Zbl 1439.74285
[26] Gao, J.; Luo, Z.; Li, H.; Li, P.; Gao, L., Dynamic multiscale topology optimization for multi-regional micro-structured cellular composites, Compos. Struct., 211, 401-417 (2019)
[27] Gao, J.; Luo, Z.; Li, H.; Gao, L., Topology optimization for multiscale design of porous composites with multi-domain microstructures, Comput. Methods Appl. Mech. Engrg., 344, 451-476 (2019) · Zbl 1440.74295
[28] Andreassen, E.; Lazarov, B. S.; Sigmund, O., Design of manufacturable 3D extremal elastic microstructure, Mech. Mater., 69, 1-10 (2014)
[29] Wang, Y.; Luo, Z.; Zhang, N.; Kang, Z., Topological shape optimization of microstructural metamaterials using a level set method, Comput. Mater. Sci., 87, 178-186 (2014)
[30] Wang, F.; Sigmund, O.; Jensen, J. S., Design of materials with prescribed nonlinear properties, J. Mech. Phys. Solids, 69, 156-174 (2014)
[31] Kaminakis, N. T.; Drosopoulos, G. A.; Stavroulakis, G. E., Design and verification of auxetic microstructures using topology optimization and homogenization, Arch. Appl. Mech., 85, 1289-1306 (2015) · Zbl 1341.74140
[32] Xia, L.; Breitkopf, P., Design of materials using topology optimization and energy-based homogenization approach in matlab, Struct. Multidiscip. Optim., 52, 1229-1241 (2015)
[33] Wu, J.; Luo, Z.; Li, H.; Zhang, N., Level-set topology optimization for mechanical metamaterials under hybrid uncertainties, Comput. Methods Appl. Mech. Engrg., 319, 414-441 (2017) · Zbl 1439.74302
[34] Wang, F., Systematic design of 3D auxetic lattice materials with programmable Poisson’s ratio for finite strains, J. Mech. Phys. Solids, 114, 303-318 (2018)
[35] Zong, H.; Zhang, H.; Wang, Y.; Wang, M. Y.; Fuh, J. Y.H., On two-step design of microstructure with desired Poisson’s ratio for AM, Mater. Des., 159, 90-102 (2018)
[36] de Lima, C. R.; Paulino, G. H., Auxetic structure design using compliant mechanisms: A topology optimization approach with polygonal finite elements, Adv. Eng. Softw., 129, 69-80 (2018)
[37] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2012), Courier Corporation
[38] Hughes, T. J.R.; Cottrell, J. A.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[39] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009) · Zbl 1378.65009
[40] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis: An overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015) · Zbl 1540.65492
[41] Seo, Y.-D.; Kim, H.-J.; Youn, S.-K., Isogeometric topology optimization using trimmed spline surfaces, Comput. Methods Appl. Mech. Engrg., 199, 3270-3296 (2010) · Zbl 1225.74068
[42] Hassani, B.; Khanzadi, M.; Tavakkoli, S. M., An isogeometrical approach to structural topology optimization by optimality criteria, Struct. Multidiscip. Optim., 45, 223-233 (2012) · Zbl 1274.74339
[43] Dedè, L.; Borden, M. J.; Hughes, T. J.R., Isogeometric analysis for topology optimization with a phase field model, Arch. Comput. Methods Eng., 19, 427-465 (2012) · Zbl 1354.74224
[44] Qian, X., Topology optimization in B-spline space, Comput. Methods Appl. Mech. Engrg., 265, 15-35 (2013) · Zbl 1286.74078
[45] Luo, Z.; Wang, M. Y.; Tong, L.; Wang, S., Shape and topology optimization of compliant mechanisms using a parameterization level set method, J. Comput. Phys., 227, 680-705 (2007) · Zbl 1127.65043
[46] Wang, Y.; Benson, D. J., Isogeometric analysis for parameterized LSM-based structural topology optimization, Comput. Mech., 57, 19-35 (2016) · Zbl 1381.74212
[47] Jahangiry, H. A.; Tavakkoli, S. M., An isogeometrical approach to structural level set topology optimization, Comput. Methods Appl. Mech. Engrg., 319, 240-257 (2017) · Zbl 1439.74277
[48] Ghasemi, H.; Park, H. S.; Rabczuk, T., A level-set based IGA formulation for topology optimization of flexoelectric materials, Comput. Methods Appl. Mech. Engrg., 313, 239-258 (2017) · Zbl 1439.74414
[49] Liu, H.; Yang, D.; Hao, P.; Zhu, X., Isogeometric analysis based topology optimization design with global stress constraint, Comput. Methods Appl. Mech. Engrg., 342, 625-652 (2018) · Zbl 1440.74301
[50] Xie, X.; Wang, S.; Xu, M.; Wang, Y., A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes, Comput. Methods Appl. Mech. Engrg., 339, 61-90 (2018) · Zbl 1440.74324
[51] Guo, X.; Zhang, W.; Zhong, W., Doing topology optimization explicitly and geometrically—A new moving morphable components based framework, J. Appl. Mech., 81, Article 081009 pp. (2014)
[52] Lieu, Q. X.; Lee, J., Multiresolution topology optimization using isogeometric analysis, Internat. J. Numer. Methods Engrg., 112, 2025-2047 (2017) · Zbl 07867201
[53] Lieu, Q. X.; Lee, J., A multi-resolution approach for multi-material topology optimization based on isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 323, 272-302 (2017) · Zbl 1439.74283
[54] Wang, Z.-P.; Poh, L. H.; Dirrenberger, J.; Zhu, Y.; Forest, S., Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization, Comput. Methods Appl. Mech. Engrg., 323, 250-271 (2017) · Zbl 1439.74318
[55] De Boor, C., A Practical Guide to Splines (1978), Springer-Verlag New York · Zbl 0406.41003
[56] Andreassen, E.; Andreasen, C. S., How to determine composite material properties using numerical homogenization, Comput. Mater. Sci., 83, 488-495 (2014)
[57] Gao, J.; Li, H.; Gao, L.; Xiao, M., Topological shape optimization of 3D micro-structured materials using energy-based homogenization method, Adv. Eng. Softw., 116, 89-102 (2018)
[58] Matsui, K.; Terada, K., Continuous approximation of material distribution for topology optimization, Internat. J. Numer. Methods Engrg., 59, 1925-1944 (2004) · Zbl 1060.74583
[59] Paulino, G. H.; Le, C. H., A modified Q4/Q4 element for topology optimization, Struct. Multidiscip. Optim., 37, 255-264 (2009)
[60] Kang, Z.; Wang, Y., A nodal variable method of structural topology optimization based on Shepard interpolant, Internat. J. Numer. Methods Engrg., 90, 329-342 (2012) · Zbl 1242.74072
[61] Luo, Z.; Zhang, N.; Wang, Y.; Gao, W., Topology optimization of structures using meshless density variable approximants, Internat. J. Numer. Methods Engrg., 93, 443-464 (2013) · Zbl 1352.74247
[62] Shepard, D., A two-dimensional interpolation function for irregularly-spaced data, (Proc. 1968 23rd ACM Natl. Conf. (1968), ACM), 517-524
[63] Wendland, H., Piecewise polynomial positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4, 389-396 (1995) · Zbl 0838.41014
[64] Rozvany, G. I.N.; Bendsœ, M. P.; Kirsch, U., Layout optimization of structures, Appl. Mech. Rev., 48, 41-119 (1995)
[65] Ma, Z.-D.; Kikuchi, N.; Cheng, H.-C., Topological design for vibrating structures, Comput. Methods Appl. Mech. Engrg., 121, 259-280 (1995) · Zbl 0849.73045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.